
LogTree: A Framework for Generating System Events from Raw Textual Logs

Liang Tang and Tao Li

School of Computing and Information Sciences
Florida Internation University

Miami, 33199, USA
ltang002,taoli@cs.fiu.edu

Abstract—Modern computing systems are instrumented to
generate huge amounts of system logs and these data can
be utilized for understanding and complex system behaviors.
One main fundamental challenge in automated log analysis
is the generation of system events from raw textual logs.
Recent works apply clustering techniques to translate the raw
log messages into system events using only the word/term
information. In this paper, we first illustrate the drawbacks
of existing techniques for event generation from system logs.
We then propose LogTree, a novel and algorithm-independent
framework for events generation from raw system log mes-
sages. LogTree utilizes the format and structural information of
the raw logs in the clustering process to generate system events
with better accuracy. In addition, an indexing data structure,
Message Segment Table, is proposed in LogTree to significantly
improve the efficiency of events creation. Extensive experiments
on real system logs demonstrate the effectiveness and efficiency
of LogTree.

Keywords-log analysis; event creation; message clustering;

I. INTRODUCTION

Modern computing systems are instrumented to generate

huge amounts of system log data. The log data describes

the status of each component and records system internal

operations, such as the starting and stopping of services,

detection of network connections, software configuration

modifications, and execution errors. Analyzing system logs,

as an attractive approach for automatic system manage-

ment, monitoring and system diagnosis, has been enjoying

a growing amount of attention [1] [2] [3] [4] [5] [6].

With the increase of the system complexity, most modern

systems generate a huge amount of log data every day. For

example, one PVFS2 server could produce more than 6000

text messages for every 5 seconds [7]. In current cloud

computing environment, a data center typically maintains

over thousands of servers. Therefore, it is a challenging task

to analyze the huge amount of log data.

A. Analyzing System Logs

Generally there are two main challenges in performing

automated analysis of system logs. The first challenge is

transforming the logs into a collection of event types. Note

that the number of distinct events observed can be very

large and also grow rapidly due to the large vocabulary

size as well as various parameters in log generation [8].

In addition, variability in log languages creates difficulty in

deciphering events and errors reported by multiple products

and components [4]. Once the log data has been transformed

into the canonical form, the second challenge is the design

of efficient algorithms for analyzing log patterns from the

events. Table I shows an example of the SFTP 1 log collected

from FileZilla [9]. In order to analyze the behaviors, the

raw log messages need to be translated to several types

of events. Figure 1 shows the corresponding event timeline

created by the log messages. The event timeline provides a

convenient platform for people to understand log behaviors

and to discover log patterns.

Table I: An Example of FileZilla’s log.

No. Message
s1 2010-05-02 00:21:39 Command: put “E:/Tomcat/apps/index.html” “/disk/...
s2 2010-05-02 00:21:40 Status: File transfer successful, transferred 823 bytes...
s3 2010-05-02 00:21:41 Command: cd “/disk/storage006/users/lt...
s4 2010-05-02 00:21:42 Command: cd “/disk/storage006/users/lt...
s5 2010-05-02 00:21:42 Command: cd “/disk/storage006/users/lt...
s6 2010-05-02 00:21:42 Command: put “E:/Tomcat/apps/record1.html” “/disk/...
s7 2010-05-02 00:21:42 Status: Listing directory /disk/storage006/users/lt...
s8 2010-05-02 00:21:42 Status: File transfer successful, transferred 1,232 bytes...
s9 2010-05-02 00:21:42 Command: put “E:/Tomcat/apps/record2.html” “/disk/...
s10 2010-05-02 00:21:42 Response: New directory is: ”/disk/storage006/users/lt...
s11 2010-05-02 00:21:42 Command: mkdir ”libraries”
s12 2010-05-02 00:21:42 Error: Directory /disk/storage006/users/lt...
s13 2010-05-02 00:21:44 Status: Retrieving directory listing...
s14 2010-05-02 00:21:44 Command: ls
s15 2010-05-02 00:21:45 Command: cd “/disk/storage006/users/lt...
· · · · · · · · ·

Figure 1: Event timeline for the FileZilla log example.

1SFTP: Simple File Transfer Procotol

2010 IEEE International Conference on Data Mining

1550-4786/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDM.2010.76

491

Recently, there has been lots of research on using data

mining and machine learning techniques for analyzing sys-

tem logs and most of them address the second challenge [1]

[2] [3] [5] [6]. They focus on analyzing log patterns from

events for problem determination such as discovering tempo-

ral patterns of system events, predicting and characterizing

system behaviors, and performing system performance de-

bugging. Most of these works generally assume the log data

has been converted into events and ignore the complexities

and difficulties in transforming the raw logs into a collection

of events.

B. Contributions of the Paper

For modern complex systems, manually transforming raw

log messages to system events is extremely expensive.

Most modern complex systems are composed of various

components developed by different development teams or

even with different techniques [10]. Collecting all templates

of logs from the system documents or source code is

cumbersome and labor-intensive. In addition, there are some

practical issues, such as the lack of the complete documents

and the permissions of accessing the source code, that

would make the manual approach impossible. Some recent

works [1][8] apply clustering techniques to translate the raw

log messages into system events automatically. The basic

idea is to build clusters of the raw log messages where

each cluster represents one type of events. In clustering the

log messages, however, the existing techniques only make

use of the word/term information and ignore the format and

structural information.

In this paper, we first describe the drawbacks of existing

clustering techniques for event generation from system logs.

We show that, current methods which only make use of

the word/term level information, are not able to achieve

good performance in transforming the raw log data into

system events. Note that events generation is the basis

for further log pattern analysis. Thus low accuracy in log

data transformation would greatly limit the success of log

pattern analysis for problem determination. To address the

limitations of existing methods, we then propose LogTree,

a novel framework for events generation from raw system

log messages. LogTree utilizes the format and structural

information of the raw logs in the clustering process to

generate system events with better accuracy. We collect

system logs from 4 different and popular systems in real

world applications. Extensive experiments are conducted to

demonstrate the effectiveness of LogTree. An indexing data

structure, Message Segment Table, is also introduced in

LogTree to significantly improve the efficiency of events

creation. Experiments show that LogTree is about 2 - 10

times faster than its competitors.

The rest of the paper is organized as follows: In Section II

we formulate the problem of the system events generation

and discuss the drawbacks of traditional solutions as well

as our motivation. Section III first introduces the semi-

structural model of the log messages and then presents our

proposed similarity measurement based on this model. In

Section IV, we describe the framework LogTree for the

system events generation with its indexing data structure

Message Segment Table. In Section V we present the experi-

mental studies on 4 real system logs. Section VI summarizes

the related studies on system events generation. Finally,

Section VII concludes our paper and discusses the future

work.

II. SYSTEM EVENTS GENERATION

Formally, a series of system log is a set of messages S =
{s1, s2, · · · , sn}, where si is a log message, i = 1, 2, · · · , n,

and n is the number of log messages. The length of S is

denoted by |S|, i.e., n = |S|. The objective of the event

creation is to find a representative set of message S∗, to

express the information of S as much as possible, where

|S∗| = k ≤ |S|, each message of S∗ represents one type

of event, and k is a user-defined parameter. The intuition is

illustrated in the following Example.
Example 1: Table I shows a set of 15 log messages

generated by the FileZilla client. It mainly consists of 6

types of messages, which include 4 different commands

(e.g., “put”, “cd”, “mkdir”, and “ls”), responses, and errors.

Therefore, the representative set S∗ could be created to be

{s1, s2, s3, s7, s11, s14}, where every type of the command,

response and error is covered by S∗, and k = 6.
We hope the created events to cover the original log as

much as possible. The quality of S∗ can be measured by the

event coverage.
Definition 1: Given two sets of log messages S∗ and S,

|S∗| ≤ |S|, the event coverage of S∗ with respect to S is

JC(S
∗, S), which can be computed as follows:

JC(S
∗, S) =

∑
x∈S

max
x∗∈S∗

FC(x
∗, x),

where FC(x
∗, x) is the similarity function of the log mes-

sage x∗ and the log message x. We will discuss the similarity

function in detail in Section III.

A. Problem Statement
Given a series of system log S with a user-defined

parameter 0 ≤ k ≤ |S|, the goal is to find a representative

set S∗ ⊆ S, which satisfies:

max JC(S
∗, S),

subject to |S∗| = k.

Clearly, the system event generation can be regarded as a

text clustering problem [12] where an event is the centroid

or medoid of one cluster. However, those traditional text

clustering methods are not appropriate for system logs. We

show that those methods, which only extract the information

at the word level, cannot produce an acceptable accuracy of

the clustering of system logs.

492

B. Why is the word level information not enough?

It has been shown in [4] that log messages are relatively

short text messages but have large vocabulary size. As a

result, two messages of the same event type shares very few

common words. It is possible two messages of the same type

has two totally different sets of words.

The following is an example of two messages from the

PVFS2 log file [7]. The two messages are status messages.

Both of them belong to the same event type status which

prints out the current status of the PVFS2 internal engine.

bytes read : 0 0 0 0 0 0

metadata keyval ops : 1 1 1 1 1 1

Note that the two messages have no words in common

and clustering analysis purely based on the word level

information would not reveal any similarity between the two

messages. The similarity scores between the two messages

(the cosine similarity [12], the Jaccard similarity [13] or the

words matching similarity [8]) are 0.

C. Motivation

Although there is no common words between the two

messages in Section II-B, the structure and format informa-

tion implicitly suggest that the two messages could belong

to a same category as shown in Figure 2. The intuition is

straightforward: two messages are both split by the ’:’; the

left parts are both English words, and the right parts are 6

numbers separated by a tab. Actually, people often guess the

types of messages from the structure and format information

as well.

Figure 2: Two status messages in PVFS2.

In real system applications, the structure of log mes-

sages often implies critical information. The same type

of messages are usually assembled by the same template,

so the structure of log messages indicates which internal

component generates this log message. Therefore, we should

consider the structure information of each log message

instead of just treating it as a sentence.

III. SEMI-STRUCTURAL LOG MESSAGE

We propose a general semi-structural model to represent

the system log messages. It is able to capture the important

structural and format information in many real-world system

logs. Formally, a semi-structural log is represented by a tree

T = {V,E, L, vroot, P}, where V is the set of nodes, E is

the set of edges, L is a mapping function and defined as L:

V → P , P is the set of log message segments (or phrases),

and vroot is the root node. Note that this tree is just semi-

structural as we don’t perform information extraction from

the log messages. For building the tree, we only employ

the context-free language parser to construct a hierarchical

structure of message segments. Example 2 shows examples

for FileZilla [9] and MySQL [14] logs.

Example 2: Figure 3 shows two semi-structural log mes-

sages for the FileZilla client logs. The first tree in Figure 3

shows an execution of a SFTP command “cd”. The second

one is about a response message from the SFTP server. We

transform it to the semi-structural log T1 as follows:

T1 = {V1, E1, L1, vroot0 , P1},
V1 = {v1, v2, v3},
E1 = {(v1, v2), (v1, v3)},

vroot1 = v1,

P1 = {“Response:”, “New directory is:”, “/disk

/storage006/users/ltang002/MyFiles”},
L1(v1) = “Response:”,

L1(v2) = “New directory is:”,

L1(v3) = “/disk/storage006/users/ltang002/MyFiles”.

Figure 4 shows a semi-structural log message of the MySQL

Server, which indicates the starting of the MySQL backend

server.

Figure 3: A Semi-structural FileZilla log messages.

Figure 4: A Semi-structural MySQL log Message.

493

A. Log parsing

Building semi-structural log messages from the plain text

is accomplished by a simple context-free grammar parser2.

For example, the context-free grammar for the FileZilla log

could be established by the following 5 rules:

Message → Indicator : Content

Content → Segment | Content , Segment| Content tab Segment

Segment → Sentence | Sentence : Term

Sentence → Term | Sentence whitespace Term

Term → word | “ word ”

In the experiments of this paper, we have implemented

all the parsers for 4 different system logs in Java. None of

the parsers costs more than 200 lines source code. Existing

tools, such as JFlex3 and Cup 4, can generate the Java source

code for the parsers based on the grammar.

It is important to note that the result of the system event

creation depends on the implementation of the parser just as

many other data preprocessings. However, a lot of previous

studies focus on analyzing the format of textual logs. Some

recent work even suggests the parser can be automatically

created by an incremental learning approach [16]. So the

discussion of the parser is beyond the scope of this paper.

B. Similarity of Semi-structural Log Messages

Intuitively, for two semi-structural log messages T1 and

T2, the coverage of T1 with respect to T2 depends on the

number of similar nodes and edges of T1 and T2. A lot

of methods have been proposed to compute the distance

of two labeled trees in previous literatures [17] [18]. The

edit distance and alignment distance are two typical methods

where only the ancestral relation of nodes, not the imme-

diate parental relation of nodes, are maintained during the

computation. However, they are not appropriate for semi-

structural log messages. For example, in Figure 4, we cannot

derive the relation (“[Note]”, “3306”) from the two edges

(“[Note]”, “port”) and (“port”, “3306”), because (“[Note]”,

“3306”) expresses a different meaning.

We have analyzed many different kinds of system logs,

such as the FTP/SFTP Client: FileZilla [9], Database Server:

MySQL [14], Parallel File System: PFVS2 [7] and Apache

HTTP Server [19]. One observation is that, higher level
nodes is more important to discriminate the log message
than lower level nodes. As shown in the log messages of

Figure 3, the root node indicates the current action of the

log message, which is the most important node. Therefore,

high importance should be assigned to high level nodes.

2Note that we do not use deep natural language processing techniques to
parse the message sentences into dependency trees [15] since the grammar
of the log messages are regular or context-free, which is much simpler than
natural language. In addition, we do not need a large and labeled training
data set for word tagging.

3http://jflex.de
4http://www2.cs.tum.edu/projects/cup/

Let V (T) denote the set of nodes of tree T . For a

node v, let T (v) denote the subtree rooted at node v, and

C(v) denote the set of the children of v. Let d(L(v), L(u))
denote the similarity of message segments of node v, u
(We will discuss the definition d(·, ·) in Section III-C.).

For two nodes v and u, let M∗
C(v, u) denote the best

matching between v’s children and u’s children. Formally,

M∗
C(v, u) is a set of pairs {(vi,uj)}, which maximizes∑
(vi,uj)∈M∗

C(v,u) d(L(vi), L(uj)), where vi ∈ C(v), vj ∈
C(u) and each node of C(v) and C(u) can be contained by

exactly one pair.

Definition 2: Given two log messages s1 and s2, let

T1 = {V1, E1, L, r1, P} and T2 = {V2, E2, L, r2, P} be

the corresponding semi-structural log messages of s1 and s2
respectively, the coverage function FC(s1, s2) is computed

as follows:

FC(s1, s2) =
F ′
C(r1, r2, λ) + F ′

C(r2, r1, λ)

2
,

where

F ′
C(v1, v2, w) = w · d(L(v1), L(v2)) +∑

(v,u)∈M∗
C(v1,v2)

F ′
C(v, u, w · λ),

M∗
C(v1, v2) is the best matching between v1’s children and

v2’s children, and λ is a parameter, 0 ≤ λ ≤ 1.

Note that the function FC is obtained by another recursive

function F ′
C . F ′

C computes the similarity of two subtrees

rooted at two given nodes v1 and v2 respectively. To compare

the two subtrees, besides the root nodes v1 and v2, F ′
C needs

to consider the similarity of their children as well. Then,

there is a problem that which child of v1 should be compared

with which child of v2. In other words, we have to find

the best matching M∗
C(v1, v2) in computing F ′

C . Finding

the best matching is actually a maximal weighted bipartite

matching problem. In our implementation, we use a simple

greedy strategy to find the matching. For each child of v1,

we assign it to the maximal matched node in unassigned

children of v2. This time complexity of the greedy approach

is O(n1n2) where n1 and n2 are the numbers of children of

v1 and v2, respectively. F ′
C requires another parameter w,

which is a decay factor. In order to improve the importance

of higher level nodes, this decay factor is used to decrease

the contribution of similarities at a lower level. Since λ ≤ 1,

the decay factor w decreases along with the recursion depth.

C. Similarity of Log Message Segments

Function d(·, ·) determines the similarity between two log

message segments. A log message segment is a phrase of

a log message, which is a sequence of words and symbols.

In information retrieval, there are a lot of measurements to

compute the similarity between two sentence phrases. But

for the log message segments, we consider two additional

information as follows.

494

• symbols, such as ‘:’, ‘[’, are important to identify the

templates of the log message. Function d(·, ·) makes

use of those symbols in computing the similarity of

two log message segments.

• The type of a word/term implies the format information.

If two log messages are generated by the same template,

even if they have different sets of words/terms, the

formats of words should be similar. In our system,

there are six types T = { word, number, symbol, date,
IP, comment }. Given a term w in a message segment

m1, t(w) denotes the type of the w. t(w) ∈ T .

As mentioned in [8], the word ordering is important to

identify the similarity of two message segments. Therefore,

we define the function d(·, ·) as follows:

Definition 3: Given two message segments m1 =
p1 · · · pn1 and m2 = q1 · · · qn2 , where p1, · · · , pn1 and

q1, · · · , qn2 are terms of m1 and m2 respectively, d(m1,m2)
is computed as follows:

d(m1,m2) =
1√

n1 · n2

min(n1,n2)∑
i=1

xi

where

xi =

⎧⎨
⎩

0, for t(pi) �= t(qi); (1)

α, for t(pi) = t(qi), pi �= qi; (2)

1, for pi = qi, (3)

and α is a user-defined parameter, 0 ≤ α ≤ 1.

Function d can be computed in a linear time complexity.

D. Comparison with Tree kernel

In natural language processing, tree kernel is a kind

of similarity measurement for dependency trees [20] [21],

which is similar to our coverage function FC . However,

directly applying tree kernel for clustering the log message

is not appropriate in our work. The reasons are as follows.

• Tree kernel does not assign different importance values

for nodes at different levels. For most log message,

the high level nodes have more importance than lower

nodes.

• Computing tree kernels is time-consuming. Hence, it

is not appropriate to use tree kernels in analyzing

massive system logs. In the experimental section, we

systematically compare the performances of tree kernel

measurement with our method in real system logs.

IV. THE FRAMEWORK OF EVENT GENERATION FROM

SYSTEM LOGS

The generation of system events from the logs can be

achieved by a clustering algorithm. We develop an algorithm

independent framework to generate system events, which has

the following two major features:

• Efficiency: For current large complex and distributed

systems, even the algorithm with polynomial time com-

plexity cannot efficiently handle the massive logs. Our

framework improves the efficiency of the clustering

algorithms with the auxiliary index structure.

• Incremental Maintenance: Log messages are constantly

generated over time. Our framework for system event

generation can be maintained incrementally.

In the next two subsections, we discuss the two features in

detail.

A. Message Segment Table

Many message segments are fixed in the source code of

the system. For example, the second log message in Figure 3

has a message segment: “New directory is”. This message

segment is generated with different targets or parameters

to assemble many different response logs. Figure 4 shows

another example for MySQL. The “ready for connection”
can be assembled with different daemon processes of the

storage engine. Therefore, a lot of message segments are

duplicated in the log data. Based on this fact, we propose

an indexing data structure, called Message Segment Table
(MST) to improve the efficiency of the events creation.

Figure 5 shows the overview of the Message Segment
Table. This table is a two dimensional dynamic table. Each

entry stores the similarity score of a pair of two message

segments. Each column and row represent a unique message

segment. Let col(i) and row(i) denote the message segments

of i-th column and i-th row index respectively. entry(i, j)
denotes the entry at column i and row j, which is the

similarity score of col(i) and row(j). So the table can be

viewed as a dynamic similarity matrix of message segments.

Since every node is only possible to be compared with the

same level’s nodes, we don’t need to put nodes at different

levels in one table. Thus, we create separate MSTs for nodes

at different levels.

A hash table is used to maintain the indexes of message

segments in the MST. For each message segment, the corre-

sponding column index and row index can be searched from

this hash table. So this table is called Column Hash Table.

Note that for a unique message segment, its column index

and row index are the same. Figure 5 shows an example of

the column hash table. The search key of the hash table is

the message segment “Segment”, and the search value is a

tuple consists of the corresponding column index and the

number of occurrences “< Col, Occur >”. The number of

the occurrences is used to distinguish the frequent message

segments and infrequent message segments. Some message

segments only appear very few times in the log, such as the

parameters of an event. Considering the limitation of the

main memory size, we only store those frequent message

segments in the MST. For this purpose, when we scan all

log messages, we keep track of the number of occurrences of

each message segment using the column hash table. After

we put all message segments into the column hash table,

we remove those segments whose frequency is less than

a user-defined threshold fmin, 0 ≤ fmin ≤ 1. The MST

495

and the column hash table both become smaller when fmin

increases.

Figure 5: Overview of the Message Segment Table.

1) Building the MST: This message segment table is

built on a given set of semi-structural log messages. Using

the depth-first or breadth-first traversal, every log message

segment can be visited and inserted into the column hash

table. Once the column hash table is created, the MST can

be built by computing the similarity score of every pair of

message segments in the table. Algorithm 1 describes the

detail of building the MST and its column hash table. V (T)
denotes the set of all nodes in the forest T . For the hash table

CT , CT [k] denotes the value of key k, and CT.i denotes

the i-th key. For each node v of the log tree, v.col indicates

the field of its corresponding column index at the MST. It

is the virtual link of the node as shown Figure 5. The time

complexity of building the MST is O(|V (T)|).
2) Computing FC: In computing the coverage function

FC of two given trees T1 and T2, we do not need to access

the message segment of each node. We could obtain the

similarity score directly from the virtual link to the MST.

The virtual link of the node is stored by an integer. Since

the maximal length of message segment is a constant, the

time complexity of computing FC doesn’t change here.

But the I/O cost of computing FC is reduced largely. The

similarity score of d(·, ·) in the MST is stored by a float

number. The total I/O cost of computing d(·, ·) is reduced

from the total length of two message segments to be just 3

numbers. Furthermore, it enhances the cache-consciousness

of the algorithm, which can bring a huge improvement on

the algorithm efficiency in modern computing systems.

3) Update: The log message is a kind of streaming data,

which is constantly generated over the time. So our indexing

data structure should be updated efficiently. Since our MST

is built by a dynamic table with a hash table, we can easily

insert or remove a message segment. The time complexities

of the two operations are O(1).

Data: The set of semi-structural log messages T
Result: The Message Segment Table MSTl and the column

hash table CTl for tree level l
1 colmax ← 0
2 create column hash table CTl

3 // fill each message segment into CTl

4 foreach T ∈ T do
5 foreach v ∈ V (T) and v is at level l do
6 if L(v) is in CTl then
7 < col, occur >← CTl[L(v)]
8 occur ← occur + 1
9 else

10 col← colmax

11 insert (L(v), < col, 1 >) into CTl

12 colmax ← colmax + 1
13 end
14 v.col← col
15 end
16 end
17 // remove infrequent message segments from CTl

18 foreach (e,< col, occur >) ∈ CTl do
19 if occur < fmin · |V (T)| then
20 remove this message segment e from CTl

21 end
22 end
23 // create message segment table based on CTl

24 create the 2D dynamic table MSTl

25 for i← 0 to colmax − 1 do
26 for j ← i to colmax − 1 do
27 MSTl[i, j]← d(CTl.i, CTl.j)
28 end
29 end

Algorithm 1: MST building algorithm.

B. The Framework of Events Generation

The system event generation is based on the data cluster-

ing algorithm. Various clustering algorithms can be plugged

in the LogTree framework. We have developed a log analysis

system which uses LogTree to create events. In our system,

we choose a hierarchical clustering algorithm. Hierarchical

clustering can provide a multi-level view of the events to

the users. The users can roll up or drill down at different

level in the event timeline as the OLAP operations in the

data cube.

Algorithm 2 describes the process of events creation in our

framework. The data clustering Clu is input by the user. As

for Clu, the input data objects and the similarity function

are provided. The clustering algorithm returns representative

data objects as the a set of events.

The data clustering algorithm Clu is an input specified

by the user. The input data objects and the similarity

function are provided to the clustering algorithm Clu and

representative data objects for each cluster are returned as

the a set of events. The entire log data is usually too large

to fit in the main memory. LogTree only executes message

clustering on a time-frame of the log. Then it scans the entire

log and assigns each log message to one of created events.

496

Data: A sequence of log messages S,
A clustering algorithm Clu
Result: A set of events S∗

1 T ← ∅

2 foreach s ∈ S do
3 transform s to tree t
4 T ← T ∪ {t}
5 end
6 find the maximal level of trees lmax.
7 build the Message Segment Tables MST1,..., MSTlmax

for level 1,2,...,lmax

8 call Clu with parameters T , MST1,..., MSTlmax

9 collect cluster representative objects from Clu to S∗

Algorithm 2: Framework of Event Creation

V. EVALUATION

A. Experimental Platforms

Our system is developed in Java 1.5 Platform. Table II

shows the summary of two machines where we run our

experiments. All experiments except for scalability test are

conducted in Machine1, which is a 32-bits machine. As

for the scalability experiment, the program needs over 2G

main memory, so the scalability experiment is conducted in

Machine2, which is a 64-bits machine. All the experimental

programs are single-threaded.

Table II: Experimental Machines

Machine OS CPU Memory JVM Heap Size
Machine1 Windows

7
Intel Core i5
@2.53GHz

4G 1.5G

Machine2 Linux
2.6.18

Intel Xeon(R)
X5460@3.16GHz

32G 3G

B. Data Collection

In order to evaluate our work, we collect the log data from

4 different and popular real systems. Table III shows the

summary of our collected log data. The log data is collected

from the server machines/systems in the computer lab of

a research center. Those systems are very common system

services installed in the many data centers.

• FileZilla client 3.3[9] log, which records the client’s

operations and responses from the FTP/SFTP server.

• MySQL 5.1.31[14] error log. The MySQL database is

hosted in a developer machine, which consists of the

error messages from the MySQL database engine.

• PVFS2 server 2.8.2[7] log. It contains errors, internal

operations, status information of one virtual file sever.

• Apache HTTP Server 2.x[19] error log. It is obtained

from the hosts for the center website. The error log

mainly records various bad HTTP requests with corre-

sponding client information.

C. Comparative Methods

In order to evaluate the effectiveness and efficiency of

our work, we use 4 other related and traditional methods

in the experiments. Table IV shows all the comparative

Table III: Log data summary.

System System Type #Messages #Words per
message

#Types

FileZilla SFTP/FTP Client 22,421 7 to 15 4
MySQL Database Engine 270 8 to 35 4
PVFS2 Parallel File System 95,496 2 to 20 4
Apache Web Server 236,055 10 to 20 5

methods used in the experiments. As for “Tree Kernel”, the

tree structure is the same as that used in the our method

LogTree. Since the tree node of the log message is not

labeled, we can only choose sparse tree kernel for “Tree

Kernel” [21]. The experiments of the event generation are

conducted using two clustering algorithms, K-Medoids [22]

and Single-Linkage [13]. The reason that we choose the

two algorithms is that K-Medoids is the basic and classical

algorithm for data clustering, and Single-Linkage is a typical

hierarchical clustering which is actually used in our system.

It should be pointed out that our comparisons are focus

on similarity measurements which are independent from a

specific clustering algorithm. We expect that the insights

gained from our experiment comparisons can be generalized

to other clustering algorithms as well.

Table IV: Summary of comparative methods.

Method Description
“TF-IDF” the classical text clustering method using the vector space

model with tf-idf transformation.
“Tree Kernel” the tree kernel similarity introduced in [21].

‘Matching” the method using words matching similarity in [8].
“LogTree” our method using semi-structural log and Message Seg-

ment Table.
“Jaccard” Jaccard Index similarity of two log messages.

D. The Quality of Events Generation

The entire log is split into different time frames. Each

time frame is composed of 2000 log messages and labeled

with the frame number. For example, Apache2 denotes the

2th frame of the Apache log. The quality of the results is

evaluated by the F-measure (F1-score) [12]. First, the log

messages are manually classified into several types. Then,

the cluster label for each log message is obtained by the

clustering algorithm. The F-measure score is then computed

from message types and clustered labels. Table V and Table

VI show the F-measure scores of K-Medoids and Single-

Linkage clusterings with different similarity approaches re-

spectively. Since the result of K-Medoids algorithm varies

by initial choice of seeds, we run 5 times for each K-

Medoids clustering and the entries in Table V are computed

by averaging the 5 runs.

Only “Tree Kernel” and “LogTree” need to set parameters.

“Tree Kernel” has only one parameter, λs, to penalize

matching subsequences of nodes [21]. We run it under

different parameter settings, and select the best result for

comparison. Another parameter k is the number of clusters

for clustering algorithm, which is equal to the number of

the types of log messages. Table VII shows the parameters

used for “Tree Kernel” and “LogTree”.

497

Table V: F-Measures of K-Medoids

Logs TF-IDF Tree Kernel Matching LogTree Jaccard

FileZilla1 0.8461 1.0 0.6065 1.0 0.6550
FileZilla2 0.8068 1.0 0.5831 1.0 0.5936
FileZilla3 0.6180 1.0 0.8994 1.0 0.5289
FileZilla4 0.6838 0.9327 0.9545 0.9353 0.7580

PVFS1 0.6304 0.7346 0.7473 0.8628 0.6434
PVFS2 0.5909 0.6753 0.7495 0.6753 0.6667
PVFS3 0.5927 0.5255 0.5938 0.7973 0.5145
PVFS4 0.4527 0.5272 0.5680 0.8508 0.5386

MySQL 0.4927 0.8197 0.8222 0.8222 0.5138

Apache1 0.7305 0.7393 0.9706 0.9956 0.7478
Apache2 0.6435 0.7735 0.9401 0.9743 0.7529
Apache3 0.9042 0.7652 0.7006 0.9980 0.8490
Apache4 0.4564 0.8348 0.7292 0.9950 0.6460
Apache5 0.4451 0.7051 0.5757 0.9828 0.6997

Table VI: F-Measures of Single-Linkage

Logs TF-IDF Tree Kernel Matching LogTree Jaccard

FileZilla1 0.6842 0.9994 0.8848 0.9271 0.6707
FileZilla2 0.5059 0.8423 0.7911 0.9951 0.5173
FileZilla3 0.5613 0.9972 0.4720 0.9832 0.5514
FileZilla4 0.8670 0.9966 0.9913 0.9943 0.6996

PVFS1 0.7336 0.9652 0.6764 0.9867 0.4883
PVFS2 0.8180 0.8190 0.7644 0.8184 0.6667
PVFS3 0.7149 0.7891 0.7140 0.9188 0.5157
PVFS4 0.7198 0.7522 0.6827 0.8136 0.6345

MySQL 0.4859 0.6189 0.8705 0.8450 0.5138

Apache1 0.7501 0.9148 0.7628 0.9248 0.7473
Apache2 0.7515 0.9503 0.8178 0.9414 0.7529
Apache3 0.8475 0.8644 0.9294 0.9594 0.8485
Apache4 0.9552 0.9152 0.9501 0.9613 0.6460
Apache5 0.7882 0.9419 0.8534 0.9568 0.6997

Table VII: Parameter settings

Log Type k λs λ α
FileZilla 4 0.8 0.7 0.1
MySQL 4 0.8 0.3 0.1
PVFS2 4 0.8 0.7 0.1
Apache 5 0.8 0.01 0.1

FileZilla log consists of 4 types of log messages. One

observation is that, the root node of the semi-structural

log is sufficient to discriminate the type of a message.

Meanwhile, the root node produces the largest contribution

in the similarity in “Tree Kernel” and “LogTree”. So the two

methods benefit from the structural information to achieve

a high clustering performance.

PVFS2 log records various kinds of status messages,

errors and internal operations. None of the methods can

perform perfectly. The reason is that, in some cases, two log

messages composed of distinct sets of words could belong to

one type. Thus, it is difficult to cluster this kind of messages

into one cluster. Section II-B gives an example about this.

MySQL error log is small, but some messages are very

long. Those messages are all assembled by fixed templates.

The parameter part is very short comparing with the total

length of the template, so the similarity of [8] based on the

templates wouldn’t be interfered by the parameter parts very

much. Therefore, “Matching” always achieves the highest

performance.

Apache error log is very similar to FillZilla log. But it

contains more useless components to identify the types of

the error message, such as the client information. In our

semi-structural log, those useless components are located at

low level nodes. Therefore, when the parameter λ becomes

small, their contributions to the similarity are reduced, then

the overall performance becomes better.

To sum up, the “Tree Kernel” and “LogTree” methods

outperform other methods. The main reason is that, the two

methods capture both the word level information as well as

the structural and format information of the log messages.

In the next subsection, we show that our “LogTree” is more

efficient than “Tree Kernel”.

E. The Efficiency of Event Generation

We records the running time of each clustering algorithm

on the log data. Due to the space limitation, we only show

the running time of K-Medoids algorithm on FileZilla log,

PVFS2 log, and Apache error log in Figure 6a, 6b and

6c. The running time is the average number of 5 runs.

In the implementation, we build the similarity matrix of

each pair of log messages at the beginning, whose time

complexity is O(N2) where N is the number of samples.

Thus, the majority of the running time is used for building

the similarity matrix. As for “LogTree”, the threshold of

Message Segment Table is fmin = 0.00001. The parameter

choice depends on the size of the main memory. Note
that the running time of LogTree includes the time for
building MST.

Figure 6 shows that the vector space model based text

clustering, “TF-IDF”, is the most efficient approach. The

reason is that, the sparse vector is a compact representation

of the log message. The cosine similarity of two sparse vec-

tors can be obtained in one pass. The vector transformation

can be achieved in a linear time complexity by using a hash

table. Furthermore, the cosine similarity of vectors do not

consider the structural information of two log messages.

Our proposed approach, “LogTree”, is in the second place

in Figure 6. With the help of the Message Segment Table,

it can save a lot of computation to obtain the similarity of

two tree nodes. However, in order to consider the structural

information of the log message, the similarity function FC

still has to find the most matched node in each level of the

tree. So it cannot be completed in one pass as the cosine

similarity.

The other three methods, “Tree Kernel”, “Matching” and

“Jaccard” are slower than the previous two methods. One

reason is that, those three methods do not provide a compact

representation of the log message in the main memory. For

the similarity of every two messages, they all have to access

the original messages, requiring more CPU and I/O costs.

As for “Tree Kernel”, it compares every pair of nodes in the

same level and its time complexity O(mn3) is very large,

where m and n are the number of nodes in the two trees

respectively [21].

498

FileZilla1 FileZilla2 FileZilla3 FileZilla4
FileZilla Log Files

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

R
u
n
n
in
g
T
im

e
(S
e
c
o
n
d
s
)

TF-IDF

Tree Kernel

Matching

LogTree

Jaccard

(a) FileZilla logs

PVFS1 PVFS2 PVFS3 PVFS4
PVFS2 Log Files

0

15000

30000

45000

60000

75000

90000

105000

120000

135000

R
u
n
n
in
g
T
im

e
(S
e
c
o
n
d
s
)

TF-IDF

Tree Kernel

Matching

LogTree

Jaccard

(b) PVFS2 logs

Apache1 Apache2 Apache3 Apache4 Apache5

Apache Error Log Files

0

15000

30000

45000

60000

75000

90000

105000

120000

135000

R
u
n
n
in
g
T
im

e
(S
e
c
o
n
d
s
)

TF-IDF

Tree Kernel

Matching

LogTree

Jaccard

(c) Apache logs

Figure 6: The Efficiency of K-Medoids

1000 2000 3000 4000 5000 6000 7000 8000
Number of Log Messages

0

50000

100000

150000

200000

250000

R
u
n
n
in
g
T
im

e
(S
e
c
o
n
d
s
)

TF-IDF

Tree Kernel

Matching

LogTree

Jaccard

(a) FileZilla logs

1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Log Messages

0

200000

400000

600000

800000

1000000

1200000

1400000
R
u
n
n
in
g
T
im

e
(S
e
c
o
n
d
s
)

TF-IDF

Tree Kernel

Matching

LogTree

Jaccard

(b) PVFS2 logs

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Log Messages

0

1000000

2000000

3000000

4000000

5000000

R
u
n
n
in
g
T
im

e
(S
e
c
o
n
d
s
)

TF-IDF

Tree Kernel

Matching

LogTree

Jaccard

(c) Apache logs

Figure 7: Time Scalability of K-Medoids

F. The Scalability of Event Generation

1) Time Scalability: We run all methods on the logs with

different sizes to evaluate their time scalability. Figure 7a, 7b

and 7c show the scalability results of K-Medoids algorithm

with different similarity measurements. The running time is

obtained by averaging 5 different runs as mentioned before.

This experiment needs more than 2G main memory, so it

is conducted in a different machine that we introduced in

Section V-A. The results shown in Figure 7a, 7b and 7c are

consistent with the efficiency tests in previous subsection.

“TF-IDF” is the most efficient approach, and our proposed

method,“LogTree”, is in the second place, where the thresh-

old for MST fmin = 0.00001.

2) Space Scalability: The space costs for all methods are

identical except for our method “LogTree”. For “LogTree”,

there is an additional message segment table. The message

segment table is always maintained in the main memory.

Figure 8 shows the space cost of message segment tables,

which is the sum of the entries of each level’s MST, where

fmin = 0.00001. In this figure, FileZilla log has the largest

space cost in MSTs. The reason is that, the diversity of

FileZilla log is very low, so MST almost covers all message

segments. On the other hand, the diversity of PVFS2 log is

high, which covers various kinds of status messages, error,

internal operations. Thus, only a few message segments’

frequencies are greater than fmin and are maintained in the

4000 8000 12000 16000 200001000
Number of Log Messages

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
o
ta
l
N
u
m
b
e
r
o
f
E
n
tr
ie
s
in

M
S
T
s

1e7

FileZilla

PVFS2

Apache

Figure 8: Space Scalability of LogTree.

MST.

Every entry of MST is a float number, which occupies

4 bytes. The largest actual memory cost of those MSTs in

Figure 8 is 3.2 × 107 × 4 = 128M bytes. Comparing to

the similarity matrix of log messages built by the clustering

algorithm, 20000 × 20000/2 × 4 = 1.6G bytes, the MST’s

cost can be ignored.

G. A Case Study

We have developed a log analysis toolkit using Logtree
for events generation from system log data. Figure 9 shows

a case study of using our developed toolkit for detecting

configuration errors in Apache Web Server. The config-

uration error is usually cased by human, which is quite

different from random TCP transmission failures, or disk

read errors. As a result, configuration errors typically lead

499

to certain patterns. However, the Apache error log file has

over 200K log messages. It is difficult to discover those

patterns directly from the raw log messages. Figure 9 shows

the event timeline window of our toolkit, where the user can

easily identify the configuration error in the time frame. This

error is related to the permission setting of the HTML file. It

causes continuous permission denied errors in a short time.

In addition, by using the hierarchical clustering method,

LogTree provides multi-level views of the events. The user

could use the slider to choose a deeper view of events to

check detail information about this error.

Figure 9: A case study of the Apache HTTP server log.

VI. RELATED WORK

The related work about the log data analysis can be

broadly summarized into two categories. One category is

on system event generation from raw log data [8] [16] [11]

and the other category is on analyzing patterns from system

events [1] [2] [3] [5] [6].

Our work in this paper belongs to the first category. A

word matching similarity measurement is introduced in [8]

for clustering the log messages. One problem is that, some

types of log messages may not have much common words.

[11] develops a 4-steps partitioning method for clustering

the log messages based on some characteristics of the log

format. However, the methods is not able to handle the

situation that one event type with multiple message formats.

[16] studies an automatically learning approach to capture

the format the log. It can be treated as an assistant tool for

many related works in this category.

VII. CONCLUSION AND FUTURE WORK

In this paper, we show that traditional methods which

only make use of the word level information, are not able to

achieve an acceptable accuracy for generating system events

from the log data. To address the limitation of existing meth-

ods, we propose LogTree, a novel and algorithm-independent

framework for events creation from system log messages.

LogTree utilizes the format and structural information in

the log message and employs Message Segment Table for

effective and efficient system event generation.

As for the future work, we will integrate the automatic log

structure learning approach into our framework. Specially,

semi-supervised learning techniques can be applied in our

framework to capture the structural information of log mes-

sages. We hope to identify those structures of log messages

from a few labeled samples provided by the users.

REFERENCES

[1] W. Peng, C. Perng, T. Li, and H. Wang, “Event summarization for system
management,” in Proceedings of ACM KDD, San Jose, California, USA, August
2007, pp. 1028–1032.

[2] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Mining console
logs for large-scale system problem detection,” in SysML, San Diego, CA, USA,
December 2008.

[3] J. L. Hellerstein, S. Ma, and C.-S. Perng, “Discovering actionable patterns in
event data,” IBM Systems Journal, vol. 43, no. 3, pp. 475–493, 2002.

[4] J. Stearley, “Towards informatic analysis of syslogs,” in Proceedings of IEEE
International Conference on Cluster Computing, San Diego, California, USA,
September 2004, pp. 309–318.

[5] T. Li, F. Liang, S. Ma, and W. Peng, “An integrated framework on mining logs
files for computing system management,” in Proceedings of ACM KDD, Chicago,
Illinois, USA, August 2005, pp. 776–781.

[6] J. Gao, G. Jiang, H. Chen, and J. Han, “Modeling probabilistic measurement
correlations for problem determination in large-scale distributed systems,” in
Proceedings of the 29th International Conference on Distributed Computing
Systems (ICDCS’09), 2009, pp. 623–630.

[7] “PVFS2 : The state-of-the-art parallel I/O and high performance virtual file
system,” http://pvfs.org.

[8] M. Aharon, G. Barash, I. Cohen, and E. Mordechai, “One graph is worth a
thousand logs: Uncovering hidden structures in massive system event logs,” in
Proceedings of ECML/PKDD, Bled, Slovenia, September 2009, pp. 227–243.

[9] “FileZilla: An open-source and free FTP/SFTP solution,” http://filezilla-project.
org.

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[11] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event logs
using iterative partitioning,” in Proceedings of ACM KDD, Paris, France, June
2009, pp. 1255–1264.

[12] G. Salton and M. McGill, Introduction to Modern Information Retrieval.
McGraw-Hill, 1984.

[13] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Addison
Wesley, 2005.

[14] “MySQL: The world’s most popular open source database,” http://www.mysql.
com.

[15] C. D. Manning and H. Schuetze, Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[16] K. Fisher, D. Walker, and K. Q. Zhu, “Incremental learning of system log
formats,” SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 85–90, 2010.

[17] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM Journal on Computing, vol. 18, no. 6,
pp. 1245–1262, 1989.

[18] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. K. Sellis, “Clustering xml
documents using structural summaries,” in Proceedings of EDBT Workshops,
Heraklion, Crete, Greece, March 2004, pp. 547–556.

[19] “Apache HTTP Server : An Open-Source HTTP Web Server,” http://www.
apache.org.

[20] A. Moschitti, “Making tree kernels practical for natural language learning,” in
Proceedings of EACL, Trento, Italy, April 2006.

[21] A. Culotta and J. S. Sorensen, “Dependency tree kernels for relation extraction,”
in Proceedings of ACL, Barcelona, Spain, July 2004, pp. 423–429.

[22] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 2ed.
Morgan Kaufmann, 2005.

500

