
Discovering Lag Intervals for Temporal Dependencies

Liang Tang Tao Li
School of Computer Science

Florida International University
11200 S.W. 8th Street
Miami, Florida, 33199

U.S.A
{ltang002,taoli}@cs.fiu.edu

Larisa Shwartz
IBM T.J Watson Research Center

19 Skyline Drive
Hawthorne, NY, 10532

U.S.A
lshwart@us.ibm.com

ABSTRACT
Time lag is a key feature of hidden temporal dependencies
within sequential data. In many real-world applications,
time lag plays an essential role in interpreting the cause
of discovered temporal dependencies. Traditional tempo-
ral mining methods either use a predefined time window to
analyze the item sequence, or employ statistical techniques
to simply derive the time dependencies among items. Such
paradigms cannot effectively handle varied data with special
properties, e.g., the interleaved temporal dependencies.
In this paper, we study the problem of finding lag intervals

for temporal dependency analysis. We first investigate the
correlations between the temporal dependencies and other
temporal patterns, and then propose a generalized frame-
work to resolve the problem. By utilizing the sorted table in
representing time lags among items, the proposed algorithm
achieves an elegant balance between the time cost and the
space cost. Extensive empirical evaluation on both synthet-
ic and real data sets demonstrates the efficiency and effec-
tiveness of our proposed algorithm in finding the temporal
dependencies with lag intervals in sequential data.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining

Keywords
Temporal dependency, Time lag

1. INTRODUCTION
Sequential data is prevalent in business, system manage-

ment, health-care and many scientific domains. One fun-
damental problem in temporal data mining is to discover
hidden temporal dependencies in the sequential data [23]
[11] [13] [8] [29]. In temporal data mining, the input da-
ta is typically a sequence of discrete items associated with
time stamps [24] [23]. Let A and B be two types of items,
a temporal dependency for A and B, written as A → B,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

denotes that the occurrence of B depends on the occurrence
of A. The dependency indicates that an item A is often fol-
lowed by an item B. Let [t1, t2] be the range of the lag for
two dependent A and B. This temporal dependency with
[t1, t2] is written as A →[t1,t2] B [7]. For example, in system
management, disk capacity alert and database alert are two
item types. When the disk capacity is full, the database
engine often raises a database alert in the next 5 to 6 min-
utes as shown in Figure 1. Hence, the disk capacity has
a temporal dependency with the database. [5min, 6min] is
the lag interval between the two dependent system alert-
s. disk capacity alert →[5min,6min] database alert describes
the temporal dependency with the associated lag interval.
This paper studies the problem of finding appropriate lag
intervals for two dependent item types.

Figure 1: Lag Interval for Temporal Dependency

Temporal dependencies are often used for prediction. In
Figure 1, [5min, 6min] is the predicted time range, indicating
when a database alert occurs after a disk capacity alert is
received. Furthermore, the associated lag interval charac-
terizes the cause of a temporal dependency. For example,
if the database is writing a huge temporal log file which is
larger than the disk free space, the database alert is imme-
diately raised in [0min, 1min]. But if the disk free capacity
is consumed by other applications, the database engine can
only detect this alert when it runs queries. The associate
time lags in such a case would be larger than 1 minute.

Previous work for discovering temporal dependencies does
not consider interleaved dependencies [17] [4] [21]. For A →
B, they assume that an item A can only have a dependency
with its first following B. However, it is possible that an
item A has a dependency with any following B. For exam-
ple, in Figure 1, the time lag for two dependent A and B is 5
to 6 minutes, but the time lag for two adjacent A’s is only 4
minutes. All A’s have a dependency with the second follow-
ing B, not the first following B. Hence, the dependencies
among these dependent A and B are interleaved. For two
item types, the numbers of time stamps are both O(n), The
number of possible time lags is O(n2). Thus, the number
of lag intervals is O(n4). The challenge of our work is how

to efficiently find appropriate lag intervals over the O(n4)
candidates.

1.1 Contributions
In this paper, we study the problem of finding appropriate

lag intervals for temporal dependency analysis. The contri-
bution of this paper is summarized as follows:

• Investigates the relationship among the lag intervals
and other existing temporal patterns proposed in pre-
vious work. It shows that, many existing temporal
patterns can be expressed as special cases of temporal
dependencies with lag intervals.

• Develops an algorithm for discovering appropriate lag
intervals. The time complexity is O(n2 logn) and the
space complexity is O(N), where N is the number of
items, and n is the number of distinct time stamps.
This paper also proves that, there is no algorithm can
solve this problem with an o(n2) time complexity.

• Conducts extensive experiments on synthetic and real
data sets. The experimental results confirm the theo-
retical analysis of this paper and show that the perfor-
mance of the proposed algorithm outperforms baseline
algorithms.

1.2 Road Map
The rest of the paper is organized as follows: Section 2

summarizes the related work for temporal pattern mining
and discusses the relationships with other existing temporal
patterns. Section 3 defines the lag interval that we try to
find. Section 4 presents several algorithms for finding ap-
propriate lag intervals and analyzes the complexity of our
problem. In Section 5, we present the experimental studies
on synthetic and real data sets. Finally, Section 6 concludes
our paper and discusses the future work.

2. RELATED WORK
Previous work of temporal dependency discovery can be

categorized by the data set type. The first category is for
market basket data, which is a collection of transactions
[29] where each transaction is a sequence of items. The pur-
pose of this type of temporal dependency discovery is to
find frequent subsequences which are contained by a certain
amount of transactions. Typical algorithms are GSP [28],
FreeSpan[9], PrefixSpan[26], and SPAM[3]. The second cat-
egory is for the time series data. A temporal dependency of
this category is seen as a correlation on multiple time series
variables [32] [5], which determines whether one time series
is useful in forecasting another. Our work belongs to the
third category, which is for temporal symbolic sequences.
The input data is an item sequence and each item is asso-
ciated with a time stamp. An item may represent an event
or a behavior in history [18] [24] [23] [25][16]. The purpose
is to find various temporal relationships among these events
or behaviors. Many temporal patterns proposed in previous
work can be considered as special cases of temporal depen-
dencies with different lag intervals.

2.1 Relation with Other Temporal Patterns
Table 1 lists several types of temporal patterns proposed

in the literature and their corresponding temporal depen-
dencies with lag intervals. A mutually dependent pattern

(m-pattern) {A,B}, can be described as two temporal de-
pendencies A →[0,δ] B and B →[0,δ] A. Items of A and B in
anm-pattern appear almost together so that t1 = 0, t2 ≤ δ,
where δ is the time tolerance. A partially periodic pattern
(p-pattern) [20] for a single item A, can be expressed as
a temporal dependency A →[p−δ,p+δ] A, where p is the pe-
riod. Frequent episodes A → B → C can be separated to
A →[0,p] B and B →[0,p] C where p is the parameter of the
time window length [21]. [17] proposes loose temporal pat-
tern and stringent temporal pattern. As shown in Table 1,
the two types of temporal patterns can be explained by two
temporal dependencies with particular constraints on the lag
intervals. One common problem of these algorithms is how
to set the precise parameter about the time window [21] [20]
[4]. For example, for discovering partially periodic patterns,
if δ is too small, the identification of partially periodic pat-
terns would be too strict and no result can be found; if the δ
is too large, many false results would be found. [15] [14] [22]
directly find frequent episodes according to the occurrences
of episodes in the data sequence. The discovered frequent
episode may not have fixed lag intervals for the represented
temporal dependency. Our method proposed in this paper
does not require users to specify the parameters about the
time window and is able to discover interleaved temporal
dependencies.

3. QUALIFIED LAG INTERVAL
Given an item sequence S = x1x2...xN , xi denotes the

type of the i-th item, and t(xi) denotes the time stamp of
xi, i = 1, 2, ..., N . Intuitively, if there is a temporal depen-
dency A →[t1,t2] B in S, there must be a lot of A’s that are
followed by some B with a time lag in [t1, t2]. Let n[t1,t2]

denote the observed number of A’s in this situation. For
instance, in Figure 1, every A is followed by a B with a time
lag of 5 or 6 minutes, so n[5,6] = 4. Only the second A is fol-
lowed by a B with a time lag of 0 or 1 minute, so n[0,1] = 1.
Let r = [t1, t2] be a lag interval. One question is that, what
is the minimum required nr that we can utilize to identify
the dependency of A and B with r. In this example, the
minimum required nr cannot be greater than 4 since the
sequence has at most 4 A’s. However, if let r = [0,+∞],
we can easily have nr = 4. [20] proposes a chi-square test
approach to determine the minimum required nr, where the
chi-square statistic measures the degree of the independence
by comparing the observed nr with the expected nr under
the independent assumption. The null distribution of the s-
tatistic is approximated by the chi-squared distribution with
1 degree of freedom. Let χ2

r denote the chi-square statistic
for nr. A high χ2

r indicates the observed nr in the given se-
quence cannot be explained by randomness. The chi-square
statistic is defined as follows:

χ2
r =

(nr − nAPr)
2

nAPr(1− Pr)
, (1)

where nA is the number of A’s in the data sequence, Pr is the
probability of a B appearing in r from a random sequence.
Hence, nAPr is the expected number of A’s that are followed
by some B with a time lag in r. nAPr(1 − Pr) is the vari-
ance. Note that the random sequence should have the same
sampling rate for B as the given sequence S. The random-
ness is only for the positions of B items. It is known that a
random sequence usually follows the Poisson process, which
assumes the probability of an item appearing in an interval

Table 1: Relation with Other Temporal Patterns

Temporal Pattern An Example Equivalent Temporal Dependency
with Lag Interval

Mutually dependent pattern [19] {A,B} A →[0,δ] B, B →[0,δ] A

Partially periodic pattern [20] A with periodic p and a given time toler-
ance δ

A →[p−δ,p+δ] A

Frequent episode pattern [21] A → B → C with a given time window p A →[0,p] B, B →[0,p] C

Loose temporal pattern [17] B follows by A before time t A →[0,t] B

Stringent temporal pattern [17] B follows by A about time t with a given
time tolerance δ

A →[t−δ,t+δ] B

is proportional to the length of the interval [27]. Therefore,

Pr = |r| · nB

T
, (2)

where |r| is the length of r, |r| = t2 − t1 + wB , wB is the
minimum time lag of two adjacent B’s, wB > 0, and nB

is the number of B’s in S. For lag interval r, the absolute
length is t2−t1. wB is added to |r| because without wB when
t1 = t2, |r| = 0, Pr is always 0 no matter how large the nB is.
As a result, χ2

r would be overestimated. In reality, the time
stamps of items are discrete samples and wB is the observed
sampling period for B items. Hence, the probability of a B
appearing in t2 − t1 time units is equal to the probability of
a B appearing in t2 − t1 + wB time units.
The value of χ2

r is defined in terms of a confidence level.
For example, 95% confidence level corresponds to χ2

r = 3.84.
Based on Eq.(1), the observed nr should be greater than√

3.84nAPr(1− Pr)+nAPr. Note that we only care positive
dependencies, so

nr − nAPr > 0. (3)

To ensure a discovered temporal dependency fits the entire
data sequence, support [2] [28] [20] is used in our work. For
A →r B, the support suppA(r) (or suppB(r)) is the number
of A’s (or B’s) that satisfy A →r B divided by the total
number of items N . minsup is the minimum threshold for
both suppA(r) and suppB(r) specified by the user [28] [20].
Based on the two minimum thresholds χ2

c and minsup, Def-
inition 1 defines the qualified lag interval that we try to find.

Definition 1. Given an item sequence S with two item
types A and B, a lag interval r = [t1, t2] is qualified if
and only if χ2

r > χ2
c, suppA(r) > minsup and suppB(r) >

minsup, where χ2
c and minsup are two minimum thresholds

specified by the user.

4. LAG INTERVAL DISCOVERY
In this section, we first develop a straightforward algo-

rithm for finding all qualified lag intervals, a brute-force al-
gorithm. Then, STScan and STScan∗ algorithms are pro-
posed which are much more efficient. We also present a
lower bound of the time complexity for finding qualified lag
intervals. Finally, we discuss how to incorporate the domain
knowledge to speed up the algorithms.

4.1 Brute-Force Algorithm
To find all qualified lag intervals, a straightforward al-

gorithm is to enumerate all possible lag intervals, compute
their χ2

r and supports, and then check whether they are qual-
ified or not. This algorithm is called brute-force. Clearly, its

time cost is very large. Let n be the number of distinct time
stamps of S, r = [t1, t2]. The numbers of possible t1 and t2
are O(n2), and then the number of possible r is O(n4). For
each lag interval, there is at least O(n) cost to scan the entire
sequence S to compute the χ2

r and the supports. Therefore,
the overall time cost of the brute-force algorithm is O(n5),
which is not affordable for large data sequences.

4.2 STScan Algorithm
To avoid re-scanning the data sequence, we develop a sort-

ed table based algorithm. A sorted table is a sorted linked
list with a collection of sorted integer arrays. Each entry
of the linked list is attached to two sorted integer arrays.
Figure 2 shows an example of the sorted array. In our algo-

Figure 2: Sorted Table

rithm, we store every time lag t(xj)− t(xi) into each entry
of linked list, where xi = A, xj = B, i, j are integers from
1 to N . Two arrays attached to the entry t(xj) − t(xi) are
the collections of i and j. In other words, the two arrays
are the indices of A’s and B’s. Let Ei denote the i-th entry
of the linked list and v(Ei) denote the time lag stored at
Ei. IAi and IBi denote the indices of A’s and B’s that are
attached to Ei. For example in Figure 2, x3 = A, x5 = B,
t(x5) − t(x3) = 20. Since v(E2) = 20, IA2 contains 3 and
IB2 contains 5. Any feasible lag interval can be represented
as a subsegment of the linked list. For example in Figure 2,
E2E3E4 represents the lag interval [20, 120].

To create the sorted table for a sequence S, each time lag
between an A and a B is first inserted into a red-black tree.
The key of the red-black tree node is the time lag, the value
is the pair of indices of A and B. Once the tree is built, we

traverse the tree in ascending order to create the linked list
of the sorted table. In the sequence S, the number A and B
are both O(N), so the number of t(xj)−t(xi) is O(N2). The
time cost of creating the red-black tree is O(N2 logN2) =
O(N2 logN). Traversing the tree costs O(N2). Hence, the
overall time cost of creating a sorted table is O(N2 logN),
which is the known lower bound of sorting X + Y where
X and Y are two variables [10]. The linked list has O(N2)
entries, and each attached integer array has O(N) elements,
so it seems that the space cost of a sorted table is O(N2 ·
N) = O(N3). However, Lemma 1 shows that the actual
space cost of a sorted table is O(N2), which is same as the
red-black tree.

Lemma 1. Given an item sequence S having N items, the
space cost of its sorted table is O(N2).

Proof. Since the numbers of A’s and B’s are both O(N),
the number of pairs (xi, xj) is O(N2), where xi = A, xj = B,
xi, xj ∈ S. Every pair associated with three entries in the
sorted table: the time stamp distance, the index of an A and
the index of a B. Therefore, each pair (xi, xj) introduces
3 space cost. The total space cost of the sorted table is
O(3N2) = O(N2).

Once the sorted table is created, finding all qualified lag
intervals is scanning the subsegments of the linked list. How-
ever, the number of entries in the linked list is O(N2), so
there are O(N4) distinct subsegments. Scanning all sub-
segments is still time-consuming. Fortunately, based on the
minimum thresholds on the chi-square statistic and the sup-
port, the length of a qualified lag interval cannot be large.

Lemma 2. Given two minimum thresholds χ2
c and minsup,

the length of any qualified lag interval is less than T
N
· 1
minsup

.

Proof. Let r be a qualified lag interval. Based Eq.(1)
and Inequality.(3), χ2

r increases along with nr. Since nr ≤
nA,

(nA − nAPr)
2

nAPr(1− Pr)
≥ χ2

r > χ2
c =⇒ Pr <

nA

χ2
c + nA

.

By substituting Eq. 2 to the previous inequality,

|r| < nA

χ2
c + nA

· T

nB
.

Since nB > N ·minsup, χ2
c > 0, we have

|r| < T

N
· 1

minsup
= |r|max.

T
N

is exactly the average period of items, which is deter-
mined by the sampling rate of this sequence. For example,
in system event sequences, the monitoring system checks
the system status for every 30 seconds and records system
events into the sequence. The average period of items is 30
seconds. Therefore, we consider T

N
as a constant. minsup

is also a constant, so |r|max is a constant.
Algorithm STScan states the pseudocode for finding all

qualified lag intervals. len(ST) denotes the number of en-
tries of the linked list in sorted table ST . This algorithm
sequentially scans all subsegments starting with E1, E2, ...,
Elen(ST). Based on Lemma 2, it only scans the subsegment

with |r| < |r|max. To calculate the χ2
r and the supports,

Algorithm 1 STScan (S,A,B, ST, χ2
c ,minsup)

Input: S : input sequence; A, B: two item types; ST
: sorted table; χ2

c : minimum chi-square statistic threshold;
minsup: minimum support.
Output: a set of qualified lag intervals;

1: R← ∅
2: Scan S to find wB

3: for i = 1 to len(ST) do
4: IAr ← ∅, IBr ← ∅
5: t1 ← v(Ei)
6: j ← 0
7: while i+ j ≤ len(ST) do
8: t2 ← v(Ei+j)
9: r ← [t1, t2]
10: |r| ← t2 − t1 + wB

11: if |r| ≥ |r|max then
12: break
13: end if
14: IAr ← IAr ∪ IAi+j

15: IBr ← IBr ∪ IBi+j

16: j ← j + 1
17: if |IAr|/N ≤ minsup or |IBr|/N ≤ minsup then
18: continue
19: end if
20: Calculate χ2

r from |IAr| and |r|
21: if χ2

r > χ2
c then

22: R← R ∪ r
23: end if
24: end while
25: end for
26: return R

for each subsegment, it cumulatively stores the aggregate
indices of A’s and B’s and the corresponding lag interval
r. For each subsegment, nr = |IAr|, suppA(r) = |IAr|/N ,
suppB(r) = |IBr|/N .

Lemma 3. The time cost of STScan is O(N2), where N
is the number of items in the data sequence.

Proof. For each entry Ei+j in the linked list, the time
cost of merging IAi+j and IBi+j to IAr and IBr is |IAi+j |+
|IBi+j | by using a hash table. Let li be the largest length
of the scanned subsegments starting at Ei. Let lmax be the
maximum li, i = 1, ..., len(ST). The total time cost is:

T (N) =

len(ST)∑
i=1

li−1∑
j=0

(|IAi+j |+ |IBi+j |)

≤
len(ST)∑

i=1

lmax−1∑
j=0

(|IAi+j |+ |IBi+j |)

≤ lmax ·
len(ST)∑

i=1

(|IAi|+ |IBi|)

∑len(ST)
i=1 (|IAi|+ |IBi|) is exactly the total number of inte-

gers in all integer arrays. Based on Lemma 1,
∑len(ST)

i=1 (|IAi|+
|IBi|) = O(N2). Then T (N) = O(lmax ·N2). Let Ek...Ek+l

be the subsegment for a qualified lag interval, v(Ek+i) ≥
0, i = 0, ..., l. The length of this lag interval is |r| =
v(Ek+lmax)− v(Ek) < |r|max, then lmax < |r|max and lmax

is not depending on N . Assume ∆E is the average v(Ek+1)−
v(Ek), k = 1, ..., len(ST) − 1, we obtain a tighter bound of
lmax, i.e., lmax ≤ |r|max/∆E ≤ T

N·∆E
· 1

minsup
. Therefore,

the overall time cost is T (N) = O(N2).

4.3 STScan* Algorithm
To reduce the space cost of STScan algorithm, we devel-

op an improved algorithm STScan∗ which utilizes the incre-
ment sorted table and sequence compression.

4.3.1 Incremental Sorted Table
Lemma 1 shows the space cost of a complete sorted table

is O(N2). Algorithm STScan sequentially scans the subseg-
ments starting from E1 to Elen(ST), so it does not need to
access every entry at every time. Based on this observation,
we develop an incremental sorted table based algorithm with
an O(N) space cost. This algorithm incrementally creates
the entries of the sorted table along with the subsegment
scanning process.

Figure 3: Incremental Sorted Table

The linked list of a sorted table can be created by merging
all time lag lists of A’s (Figure 3), where Ai and Bj denote
the i-th A and the j-th B, i, j = 1, 2, The j-th entry in
the list of Ai stores t(Bj)−t(Ai). The time lag lists of all A’s
are not necessary to be created in the memory because we
only need to know t(Bj) and t(Aj). This can be done just
with an indices arrays of all A’s and all B’s respectively. By
using N -way merging algorithm, each entry of the linked list
would be created sequentially. The indices of A’s and B’s
attached to each entry are also recorded during the merging
process. Base on Lemma 2, the length of a qualified lag
interval is at most |r|max, therefore, we only keep track of
the recent lmax entries. The space cost for storing lmax

entries is at most O(lmax · N) = O(N). A heap used by
the merging process costs O(N) space. Then, the overall
space cost of the incremental sorted table is O(N). The
time cost of merging O(N) lists with total O(N2) elements
is still O(N2 logN).

4.3.2 Sequence Compression
In many real-world applications, some items may share the

same time stamp since they are sampled within the same
sampling cycle. To save the time cost, we compress the
original S to another compact sequence S′. At each time
stamp t in S, if there are k items of type I, we create a
triple (I, t, k) into S′, where k is the cardinality of this triple.
To handle S′, the only needed change of our algorithm is
that the |IAr| and |IBr| become the total cardinalities of
triples in IAr and IBr respectively. Clearly, S′ is more
compact than S. S′ has O(n) triples, where n is the number
of distinct time stamps of S, n ≤ N . Creating S′ costs
an O(N) time complexity. By using S′, the time cost of
STScan∗ becomes O(N +n2 logn) and the space cost of the
incremental sorted table becomes O(n).

4.4 Time Complexity Lower Bound
For analyzing large sequences, an O(n) or O(n logn) algo-

rithm is needed. However, we find that the time complexity
of any algorithm for our problem is at least O(n2) (Lemma
4). The proof is to reduce the 3SUM′ problem to our prob-
lem, and the 3SUM′ has no o(n2) solution [6]. To answer
whether O(n2) is the tightest lower bound or not, a further
study is needed.

Lemma 4. Finding a qualified lag interval cannot be solved
in o(n2) in the worst case, where n is the number of distinct
time stamps of the given sequence.

Proof. Assume that an algorithm P can find a qual-
ified lag interval in o(n2) in any case, we can construct
an algorithm to solve the 3SUM′ problem in o(n2) as fol-
lows. Given three sets of integers X, Y , and Z such that
|X|+ |Y |+ |Z| = n, we construct a compressed sequence S′

of items which only has two item types A and B as follows:

1. For each xi in X, create an A at time stamp xi.

2. For each yi in Y , create a B at time stamp yi.

3. For each zi in Z, create n+1 A’s at time stamp β(i+
1)+zi and n+1 B’s at time stamp β(i+1), where β is
the diameter of set X ∪ Y , which is the largest integer
minus the smallest integer in X ∪ Y .

Only the lag intervals created from zi have nr ≥ n + 1. If
there are three integers yj ∈ Y , xk ∈ X, zi ∈ Z such that
yj − xk = zi, the lag interval of zi must have nr ≥ n + 2.
Then, we substitute nr = n + 2 into Eq. 1 to find the
appropriate threshold χ2

c , and call algorithm P to find all
zi that have nr ≥ n + 2. By filtering out the situations of
yj − yk = zi and xj − xk = zi, we can obtain the desired
three integers such that yj − xk = zi if they exist. S′ has at
most 2n distinct time stamps. The time cost of creating S′ is
O(2n) = O(n). P is an o(n2) algorithm. Filtering the result
of P is O(n) since |Z| ≤ n. Therefore, the overall solution
for the 3SUM′ problem is O(n) + o(n2) + O(n) = o(n2).
However, it is believed that the 3SUM′ problem has no o(n2)
solution [6]. Therefore, the algorithm P does not exist.

4.5 Finding Lag Interval with Constraints
As discussed in Section 2, most existing temporal patterns

can be described as temporal dependencies with some con-
straints on the lag interval. In many real-world applications,
the users have the domain knowledge or other requirements
for desired lag intervals, which are helpful to speed up the
algorithm. For example, in system management, the tem-
poral dependencies of certain events can be used to identify
false alarms [31]. However, SLA(Service Level Agreement)
requires that any real system alarms must be acknowledged
within K hours, and K is specified in the contract with cus-
tomers. If a discovered lag interval is greater than K hours,
the corresponding temporal dependency is trivial and can
not be used for false alarm identification.

Generally, the constraints for a qualified lag interval [t1, t2]
can be expressed as a set of inequalities:

fi(t1, t2) ≤ di, for i = 1, ...,m,

where m is the number of constraints, fi(t1, t2) ≤ di are con-
straint functions that need to be satisfied. For example, the
constraint for the partially periodic pattern is |t1 − t2| ≤ δ.

The constraints for the predefined time window based tem-
poral pattern are t1 = 0, t2 ≤ p, where p is the window
length. To incorporate the constraints to our algorithm, a
straightforward approach is to filter discovered qualified lag
interval by the given constraints. However, this approach
does not make use of the constraints to reduce the search
space of the problem. On the other hand, since the con-
straint function fi(·, ·) can be any complex function about
t1 and t2, there is no generalized and optimal approach for
using them. We only consider two typical cases: |t1−t2| ≤ δ
and t2 ≤ p. The first case can be utilized in the subsegment
scanning. It provides a potential tighter bound than lmax if
δ < lmax, but does not change the order of the overall time
cost. The second case can be utilized to reduce the length of
the linked list of the sorted table. When t2 < p, each time
lag list of Ai has at most O(p/∆E) entries. Then, the overall
time cost can be reduced to O(n logn · p/∆E) = O(n logn).

5. EVALUATION
This section presents our empirical study of discovering

lag intervals on both synthetic data sets and real data sets
in terms of the effectiveness and efficiency.

5.1 Experimental Platform and Algorithms
All comparative algorithms are implemented in Java 1.6

platform. Table 2 summarizes our experimental environ-
ment. At present, the most dedicated algorithm for finding

Table 2: Experimental Machine
OS CPU bits Memory JVM Heap Size
Linux 2.6.18 Intel Xeon(R) @

2.5GHz, 8 core
64 16G 12G

lag intervals is the inter-arrival clustering method [17] [20],
denoted by inter-arrival. For A → B, an inter-arrival is the
time lag of an A to its first following B. A dense cluster cre-
ated from all inter-arrivals indicates its time lag frequent-
ly appears in the sequence. Thus, a qualified lag interval
is probably around this time lag. This algorithm is very
efficient and only has a linear time cost, however, it does
not consider the interleaved dependencies. We also imple-
ment the four algorithms, brute-force, brute-force∗, STScan
and STScan∗, to compare with in this experiment. brute-
force∗ is the improved version of brute-force which utilizes
the pruning strategy about |r|max mentioned in Lemma 2.
For each test, we enumerate all pairwise temporal depen-

dencies for discovering qualified lag intervals.

5.2 Synthetic Data
The synthetic data consists of 7 data sequences. Each se-

quence is first generated from a random item sequence with 8
item types, denoted by I1,...,I8. The average sample period
of items is 100. Three predefined temporal dependencies are
randomly embedded into each random sequence and shown
in Table 3. For each temporal dependency Ii →[t1,t2] Ij , we

Table 3: Embedded Temporal Dependencies
Embedded Temporal Dependencies Support

I1 →[400,500] I2 0.1

I2 →[1000,1100] I3 0.12

I4 →[5500,5800] I5 0.15

first randomly choose an item xi and an integer t ∈ [t1, t2],
and then let xi = Ii and the item at t(xi) + t be Ij . We
repeat this process until χ2

[t1,t2]
and the support are greater

than the specified thresholds. Note that the time lags in
these lag intervals are larger than the average sample period
of items, so all three temporal dependencies are very likely
to be interleaved dependencies.

5.2.1 Effectiveness
The effectiveness of the algorithm result is validated by

comparing the discovered results with the embedded lag in-
tervals and measured by the recall [29]. We do not care the
precision because every algorithm can achieve the 100% pre-
cision if this algorithm is correct. We let χ2

c = 10.83 which
represents a 99.9% confidence level, minsup = 0.1. There
is no surprise that all the algorithms proposed in this pa-
per, brute-force, brute-force∗, STScan and STScan∗, find all
the embedded lag intervals since they scan the entire space
of the lag interval. Thus, the recalls of these methods are
1.0. The parameter δ of inter-arrival is varied from 1 to
2000. However, inter-arrival does not find any qualified lag
interval in the synthetic data and its recall is 0. The reason
is that, the qualified lag intervals are [400,500], [1000,1100]
and [5500,5800], but most inter-arrivals in the sequence are
close to the average sample period 100. Thus, inter-arrival
can only probe the lag intervals around 100.

5.2.2 Efficiency
The empirical efficiency is evaluated by the CPU running

time (Figure 4). inter-arrival is a linear algorithm, so it runs
much faster than other algorithms. The running time of the
brute-force algorithm increases extremely fast so that it can
only handle very tiny data sets. By adding the pruning strat-
egy about |r|max to brute-force, the brute-force∗ algorithm
runs a little bit faster than the brute-force algorithm, but it
still can only handle small data sets. STScan∗ compresses
the sequence before the lag interval discovering, therefore,
STScan∗ is a little bit more efficient than STScan.

0 20 40 60 80 100
size of items (103)

100

101

102

103

104

C
PU

 t
im

e(
se

co
nd

)

STScan

STScan ∗

brute-force

brute-force ∗

inter-arrival

Figure 4: Runtime on Synthetic Data

STScan has not finish the tests for larger data sets be-
cause it runs out of memory. Table 5 lists the approximate
peak numbers of allocated objects in Java heap memory (not
including the data sequence). It confirms Lemma 1 that the
sorted table takes an O(N2) space cost. It also shows that,
the space costs of STScan∗, brute-force and brute-force∗ are
all O(N) as mentioned in Section 4. Assuming each Java ob-
ject only occupies an integer(8 bytes), STScan would cost

Table 4: Discovered Temporal Dependencies with Lag Intervals

Data set Dependency χ2
r support

Account1
MSG Plat APP →[3600,3600] MSG Plat APP > 1000.0 0.07

Linux Process→[0,96] Process 134.56 0.05

SMP CPU →[0,27] Linux Process 978.87 0.06

AS MSG→[102,102] AS MSG > 1000.0 0.08

Account2
TEC Error →[0,1] Ticket Retry > 1000.0 0.12

Ticket Retry →[0,1] TEC Error > 1000.0 0.12

AIX HW ERROR→[25,25] AIX HW ERROR 282.53 0.15

AIX HW ERROR→[8,9] AIX HW ERROR 144.62 0.24

Figure 5: Plotting for Account2 Data

Table 5: Space Cost on Synthetic Data
XXXXXXXXAlgorithm

Data size
103 10× 103 50× 103 100× 103

STScan 3× 104 3× 106 8× 107 OutOfMemory
STScan∗ 103 104 5× 104 105

brute-force 9× 102 104 5× 104 9× 104

brute-force∗ 9× 102 104 5× 104 9× 104

inter-arrival < 102 < 102 < 102 < 102

over 10G bytes memory for 50 × 103 items. Hence, it runs
out of memory when the data size becomes larger. However,
by using the incremental sorted table, for the same data set,
STScan∗ only costs 10M memory. inter-arrival only stores
the clusters of all inter-arrivals, so its space cost is small.

5.3 Real Data

Table 6: Real System Events
Data set Time Frame #Events #Event Types
Account1 54 days 1,124,834 95
Account2 32 days 2,076,408 104

Two real data sets are collected from IT outsourcing cen-
ters by IBM Tivoli monitoring system [1] [30], denoted as
Account1 and Account2. Each data set is a collection of
system events from hundreds of application servers and da-
ta server. These system events are mostly system alerts
triggered by some monitoring situations (e.g. the CPU u-
tilization is above a threshold). Table 6 shows the time
frames and the sizes of the two real data sets. To discov-
er the temporal dependencies with qualified lag intervals, we
let χ2

c = 6.64 which corresponds to the confidence level 99%,
and minsup = 0.05. A constraint that t2 ≤ 1hour is applied
to this testing from the domain experts. δ of inter-arrival is
varied from 1 to 2000.

Figures 6 and 7 show the running times of all algorithms
on the two real data sets. As for STScan and STScan∗

, the running times grow slower than in Figure 4 because
the constraint t2 ≤ 1hour reduces their time complexities.
Table 7 lists the peak numbers of allocated memory objects
in JVM on Account2 data. The results on Account1 data is
similar to this table.

0 20 40 60 80 100
size of items (103)

100

101

102

103

104

C
PU

 t
im

e(
se

co
n
d
)

STScan

STScan ∗

brute-force

brute-force ∗

inter-arrival

Figure 6: Running Time on Account1 Data

Table 7: Space Cost on Account2 Data
XXXXXXXXAlgorithm

Data size
103 10× 103 50× 103 100× 103

STScan 4× 104 3× 106 1× 107 3× 107

STScan∗ 103 6× 103 5× 104 105

brute-force 9× 102 3× 103 3× 103 3× 103

brute-force∗ 9× 102 3× 103 3× 103 3× 103

inter-arrival < 102 < 102 < 102 < 102

Table 4 lists several discovered temporal dependencies with
qualified lag intervals. inter-arrival only finds the first two
temporal dependencies on Account2 data. The reason is

0 20 40 60 80 100
size of items (103)

100

101

102

103

104

C
PU

 t
im

e(
se

co
n
d
)

STScan

STScan ∗

brute-force

brute-force ∗

inter-arrival

Figure 7: Running Time on Account2 Data

that, only the two temporal dependencies have very small
lag intervals which are just the inter-arrivals of the events.
However, the lag intervals for other temporal dependencies
are larger than most inter-arrivals, so inter-arrival fails.
In Table 4, the first discovered temporal dependency for

Account1 shows that MSG Plat APP is a periodic pat-
tern with a period of 1 hour. This pattern indicates this
event MSG Plat APP is a heartbeat signal from an appli-
cation. The second and third discovered temporal depen-
dencies can be viewed as a case study for event correlation
[12]. Since most servers are Linux servers, so the alerts from
processes must be also from Linux processes. Therefore, for
Account1, process events and Linux process events can be
automatically correlated. High CPU utilization alerts (SM-
P CPU) can only be triggered by abnormal processes, so
SMP CPU events can also be correlated with Linux Process
events. In Account2, the first two temporal dependencies
compose a mutual dependency pattern between TEC Error
and Ticket Retry. It can be explained by a programming
logic in IBM Tivoli monitoring system. When the mon-
itoring system fails to generate the incident ticket to the
ticketing system, it will report a TEC error and retry the
ticket generation. Therefore, TEC Error and Ticket Retry
events are often raised together. The third and fourth dis-
covered temporal dependencies for Account2 are related to
a hardware error of an AIX server but with different lag in-
tervals. This is caused by a polling monitoring situation.
When an AIX server is down, the monitoring system con-
tinuously receive AIX HW Error events when polling that
AIX server. Thus, this AIX HW Error event exhibits a pe-
riodic pattern. To validate the discovered results, we plot
the temporal events into a graphical chart. Figure 5 is a
screen shot of the plotting for Account2 data. The x-axis is
the time stamp, the y-axis is the event type. As shown by
this figure, TEC Error and Ticket Retry exhibit a mutually
dependency since they are always generated at the almost
same time. AIX HW Error is a polling event.

5.3.1 Parameter Sensitivity
To test the sensitivity of parameters, we vary χ2

c and
minsup and test the numbers of discovered temporal depen-
dencies (Figures 8 and Figure 9) and the running time (Fig-
ure 10 and Figure 11). When varying χ2

c , minsup = 0.05;
When varying minsup, χ2

c = 6.64 (with 99% confidence lev-
el). χ2

c is not sensitive to the algorithm result because the
associated confidence level is only from 95% to 99.99% al-

Figure 8: Num. of Results by Varying χ2
c

Figure 9: Num. of Results by Varying minsup

Figure 10: Running time by Varying χ2
c

Figure 11: Running time by Varying minsup

though χ2
c is varied from 3.84 to 100. By varying minsup,

the number of discovered temporal dependencies exponen-
tially decreases as shown in Figure 9. As mentioned in [20],
the effective choice of minsup is 0.001 to 0.1.

6. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of finding appropriate

lag intervals for temporal dependencies over item sequences.
We investigate the relationship between the temporal de-
pendency with other existing temporal patterns. Two al-
gorithms STScan and STScan∗ are proposed to efficiently
discover the appropriate lag intervals. Extensive empirical
evaluation on both synthetic and real data sets demonstrates
the efficiency and effectiveness of our proposed algorithm in
finding the temporal dependencies with lag intervals in se-
quential data. As for the future work, we will continue to
investigate more efficient algorithms that can handle large
data sequences. We hope to find an O(n2) time complexity
algorithm with a linear or constant space cost.

Acknowledgement
The work is supported in part by NSF grants IIS-0546280
and HRD-0833093.

7. REFERENCES
[1] IBM Tivoli Monitoring. http://www-01.ibm.com/

software/tivoli/products/monitor/.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proccedings of
VLDB, pages 487–499, 1994.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu.
Sequential pattern mining using a bitmap
representation. In Proceedings of KDD, pages 429–435,
2002.

[4] K. Bouandas and A. Osmani. Mining association rules
in temporal sequences. In Proceedings of CIDM, pages
610–615, 2007.

[5] A. Dhurandhar. Learning maximum lag for grouped
graphical granger models. In ICDM Workshops, pages
217–224, 2010.

[6] A. Gajentaan and M. H. Overmars. On a class of
O(n2) problems in computational geometry.
Computational Geometry, 5:165–185, 1995.

[7] L. Golab, H. J. Karloff, F. Korn, A. Saha, and
D. Srivastava. Sequential dependencies. PVLDB,
2(1):574–585, 2009.

[8] R. Gwadera, M. J. Atallah, and W. Szpankowski.
Reliable detection of episodes in event sequences. In
Proccedings of ICDM, pages 67–74, 2003.

[9] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M. Hsu. Freespan: frequent pattern-projected
sequential pattern mining. In Proccedings of KDD,
pages 355–359, 2000.

[10] A. Hernandez-Barrera. Finding an o(n2 logn)
algorithm is sometimes hard. In Proceedings of the 8th
Canadian Conference on Computational Geometry,
pages 289–294, August 1996.

[11] E. J. Keogh, S. Lonardi, and B. Y. chi Chiu. Finding
surprising patterns in a time series database in linear
time and space. In Proccedings of KDD, pages
550–556, 2002.

[12] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. J.
Stolfo. A coding approach to event correlation. In
Integrated Network Management, pages 266–277, 1995.

[13] S. Laxman and P. S. SASTRY. A survey of temporal
data mining. Sadhana, 31(2):173–198, 2006.

[14] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan.
Discovering frequent episodes and learning hidden

markov models: A formal connection. IEEE Trans.
Knowl. Data Eng., 17(11):1505–1517, 2005.

[15] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. A
fast algorithm for finding frequent episodes in event
streams. In Proceedings of ACM KDD, pages 410–419,
August 2007.

[16] T. Li, F. Liang, S. Ma, and W. Peng. An integrated
framework on mining logs files for computing system
management. In Proceedings of ACM KDD, pages
776–781, August 2005.

[17] T. Li and S. Ma. Mining temporal patterns without
predefined time windows. In Proceedings of ICDM,
pages 451–454, November 2004.

[18] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining
periodic behaviors for moving objects. In Proccedings
of KDD, pages 1099–1108, 2010.

[19] S. Ma and J. L. Hellerstein. Mining mutually
dependent patterns. In Proceedings of ICDE, pages
409–416, 2001.

[20] S. Ma and J. L. Hellerstein. Mining partially periodic
event patterns with unknown periods. In Proceedings
of ICDE, pages 205–214, 2001.

[21] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–289,
1997.

[22] N. Méger and C. Rigotti. Constraint-based mining of
episode rules and optimal window sizes. In Proccedings
of PKDD, pages 313–324, 2004.

[23] T. Mitsa. Temporal Data Mining. Chapman and
Hall/CRC, 2010.

[24] F. Mörchen. Algorithms for time series knowledge
mining. In Proccedings of KDD, pages 668–673, 2006.

[25] F. Mörchen and D. Fradkin. Robust mining of time
intervals with semi-interval partial order patterns. In
Proccedings of SDM, pages 315–326, 2010.

[26] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Prefixspan: Mining sequential
patterns by prefix-projected growth. In Proceedings of
EDBT, pages 215–224, 2001.

[27] S. M. Ross. Stochastic Processes. Wiley, 1995.

[28] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance
improvements. In Proceedings of EDBT, pages 3–17,
1996.

[29] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison Wesley, 2005.

[30] L. Tang, T. Li, F. Pinel, L. Shwartz, and
G. Grabarnik. Optimizing system monitoring
configurations for non-actionable alerts. In Proceedings
of IEEE/IFIP Network Operations and Management
Symposium, 2012.

[31] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I.
Jordan. Mining console logs for large-scale system
problem detection. In SysML, December 2008.

[32] W.-X. Zhou and D. Sornette. Non-parametric
determination of real-time lag structure between two
time series: The ‘optimal thermal causal path’ method
with applications to economic data. Journal of
Macroeconomics, 28(1):195 – 224, 2006.

