An Empirical Study on Recommendation with Multiple
Types of Feedback

Liang Tang
LinkedIn Corporation
Mountain View, CA, USA
ltang@linkedin.com

Bo Long
Particle Media Inc
Santa Clara, CA, USA
bo.long@particle-inc.com

Bee-Chung Chen
LinkedIn Corporation
Mountain View, CA, USA
bchen@linkedin.com

Deepak Agarwal
LinkedIn Corporation
Mountain View, CA, USA
dagarwal@linkedin.com

ABSTRACT

User feedback like clicks and ratings on recommended items pro-
vides important information for recommender systems to predict
users’ interests in unseen items. Most systems rely on models
trained using a single type of feedback, e.g., ratings for movie rec-
ommendation and clicks for online news recommendation. How-
ever, in addition to the primary feedback, many systems also allow
users to provide other types of feedback, e.g., liking or sharing an
article, or hiding all articles from a source. These additional feed-
back potentially provides extra information for the recommenda-
tion models. To optimize user experience and business objectives,
it is important for a recommender system to use both the primary
feedback and additional feedback. This paper presents an empir-
ical study on various training methods for incorporating multiple
user feedback types based on LinkedIn recommendation products.
We study three important problems that we face at LinkedIn: (1)
Whether to send an email based on clicks and complaints, (2) how
to rank updates in LinkedIn feeds based on clicks and hides and
(3) how jointly optimize for viral actions and clicks in LinkedIn
feeds. Extensive offline experiments on historical data show the
effectiveness of these methods in different situations. Online A/B
testing results further demonstrate the impact of these methods on
LinkedIn production systems.

Keywords

Recommender System; Personalized Recommendation; Multi-objective

Optimization

1. INTRODUCTION

Recommender systems have been applied to a wide range of ap-
plications, such as recommending news articles, movies, books,
and research papers. Recommender systems seek to predict the
“preference” that a user would give to an item. A typical way for
recommender systems to provide recommendations is to build a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

KDD 16, August 13-17, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. .. $15.00
DOI: http://dx.doi.org/10.1145/2939672.2939690

model based on users’ historical feedback (previously clicked, pur-
chased or selected and/or numerical ratings given to those items);
then use that model to predict items (or ratings for items) that the
users may have an interest in the future.

As modern recommender systems become more complicated and
touch more aspects of user experience, there has been a rapid in-
crease in demand for a variety of user feedback to be incorporated
into a recommendation model. A few examples are in the follow.

e News feed: The news feed of a social network site provides
a user with updates from the neighbors of the user in the net-
work. For example, a user’s LinkedIn news feed contains
articles and images shared, liked or commented on by other
users connected to the user. To optimize for user engage-
ment, a recommender system can be built to rank updates
based on the predicted click through rate (CTR) for each
(user, update) pair. While clicks provide primary feedback
for the recommender system, a user can also hide updates
from another user indicating strong dissatisfaction, provid-
ing additional types of feedback. When the system tries to
maximize CTR, it is also important to minimize the hide rate.

o Email campaign: Many companies send promotion emails
to users to engage with them. A recommender system can
be built to decide whether to send a promotion email to a
user based on the predicted CTR for each (user, email) pair
in order to maximize users’ responses to the emails. At the
same time, it is important to minimize the chance that a user
would unsubscribe all emails from the company or tag the
email as a spam, indicating strong dissatisfaction. We call
both unsubscriptions and spam tags complaints. In this case,
clicks provide primary feedback, while complaints provide
additional feedback.

e Online shopping: Whether a type of feedback is primary or
secondary depends on the application. For online shopping,
maximizing revenue from purchases is the primary objec-
tive. Thus, users’ actual purchases provide primary feed-
back, while clicks on items may provide additional feedback.

Incorporating multiple types of user feedback in a recommenda-
tion model has become an important challenge for more and more
recommender systems, though the related research is still relatively
new in the field of recommendation. An intuitive solution to the
problem is simply incorporating different feedback types into la-
bels in training data, e.g., for click and hide feedback, we can label

data instances such that click is 1, non-click is 0, hide is -1. How-
ever, this will change the original binary classification model to a
multinomial model and a multi-class prediction problem. It is not
favorable for the recommendation and ranking purpose, because
it generates multiple ranking scores and multiple ranking recom-
mendations for each item. Keeping the same type of models, like
binary classification model, and handling an additional feedback
inside the model itself is a more preferable and scalable solution
for most recommender systems. Furthermore, in a lot of situations,
some additional feedback may not be able to put into labels. For
example, downstream utilities such as page views are not easily put
into binary labels as clicks.

In this paper, we only focus on generalized linear model based
recommendation algorithms, which predict the user’s interest and
rank items based predicted interests. The performance of recom-

mendation heavily depends on the accuracy of prediction. At LinkedIn,

this type of algorithms is widely used in many products since con-
tent information, such as user profile and job information, are avail-
able for models. Collaborative filtering based approaches, such as
matrix factorization, are mainly used in feature engineering to gen-
erate latent features for the generalized linear models.

The first method we consider is model combination, i.e., train-
ing one model for each feedback data then combining all models
into a single model. This approach is feasible if the outputs of all
models are the ranking scores or recommendation scores for dif-
ferent feedback types. For example, two logistic regression models
for click data and hide data can be combined. We can either com-
bine the predicted responses of the models or combine the model
coefficients if the two models are in the same feature space and for-
mulations are also the same. Additional weight parameters control
the tradeoff of the importance of different types of feedback.

The second method is a sequential training based on Bayesian
inference. In the previously mentioned example of the click feed-
back and hide feedback, we first train a model only using the click
data and then use the model as the prior to train the final model
using the hide feedback data. The final model fits the hide data but
is also regularized by the click model. In general, we sequentially
train the model for each feedback type where the prior is utilized to
incorporate the previous model.

The third method is joint training, where we put multiple feed-
back types into a single training problem. The joint training still
has one primary feedback to optimize, but we incorporate other
secondary feedback as constraints to regularize the optimization
problem. This constrained optimization framework can be applied
to various recommendation applications. It is capable of incorpo-
rating some additional feedback types that are very different from
the primary feedback type without changing the original recom-
mendation model; i.e., there is no need to revise the online recom-
mendation system to support multiple models and scorings. Mean-
while, in many applications, a certain correlation exists in different
types of user feedback. For example, clicks and hides are often
negatively correlated; the likes and clicks are positively correlated.

In this paper, we present an empirical evaluation on the three
methods based on LinkedIn recommendation products. We study
three important problems that we face at LinkedIn: (1) Whether to
send an email based on clicks and complaints, (2) how to rank feed
updates in LinkedIn feeds based on clicks and hides and (3) how
jointly optimize for the viral actions and clicks in LinkedIn feeds.
Extensive offline experiments on historical data show the effective-
ness of these methods in different situations. Online A/B testing
results further demonstrate the impact to LinkedIn production sys-
tems with real traffic. Meanwhile, model combine has been adopted
by the current LinkedIn feed modeling in both desktop and mobile

platforms to promote viral actions and improve the overall liquidity
of the users’ social network.

The rest of this paper is organized as follows. In Section 2, we
formally introduce the problem of recommendation with multiple
types of feedback. Detailed description for the three methods that
we evaluated is presented in Section 3. Section 4 briefly discusses
the implementation of the training algorithm. Extensive empiri-
cal evaluation results are reported in Section 5. Section 6 presents
a brief summary of prior work relevant to the multi-feedback and
multi-criteria recommendation problems, and transfer learning. Fi-
nally, Section 7 concludes the paper.

2. PROBLEM FORMULATION

Recommender systems build a model from users’ historical im-
pressions and feedback, such as clicks, hides, likes, shares, com-
ments, and purchases etc. In LinkedIn, the recommendation mod-
els usually consider multiple user feedback. For instance, LinkedIn
feeds models aim to maximize the click per impression (CTR), but
also minimize the hide per impression since hide is a strong nega-
tive feedback. Meanwhile, like, comment and share are more im-
portant than click because they can significantly increase the viral-
ity of the contents and the liquidity of the social network. Hence,
those actions are important feedback to maximize in recommenda-
tion as well. Therefore, our recommendation model has multiple
objectives.

We denote our dataas P = {(x, yl(l), yEQ) s s yim)) N |, where
where x; is the feature vector of the ¢-th impression, which includes
the user features and item features, ylm, ,ygm) are the m differ-
ent types of feedback received in this impression. All the feedback
are represented as binary variables: 1 or 0. For instance, yg D=1
indicates there is a click action and 0 indicates this impression does
not receive any click. The recommendation model calculates the
ranking score for each impression and selects (or ranks) the items
based on the ranking scores. Let f(x;, 3) be the ranking score of a
given feature vector x;, where f is the model function and [is the
coefficient vector of the model. For instance, we use the logistic
regression to predict the CTR of articles. In this model, the rank-
ing score is the predicted CTR, f(x;,8) = 1/(1 4 exp(—x7} B)).
Selecting the articles with high predicted CTRs can maximize the
received click feedback from the users in future.

The problem that we study in this paper is to build a recommen-
dation model that maximizes (or minimizes) m types of feedback
received from users respectively, where the m types of feedback
are pre-defined. For instance, for job recommendation at LinkedIn,
two typical types of user feedback are click and dismiss. Click is a
positive feedback that indicates the user is interested in the recom-
mended job. However, dismiss is a strong negative feedback that
indicates the user is upset by seeing this job recommendation. The
desired model should be able to maximize the number of received
clicks and minimize the number of received dismisses simultane-
ously. It is worth to mention that we still need a single model to
make the recommendation decision for each job posting, which is
recommend or not recommend.

3. METHODS

When the number of feedback types m > 1, the studied problem
is a multi-objective optimization or multi-task learning problem.
We explored three potential methods for solving this problem based
on LinkedIn products and data. The first simple method is called
model combine. Basically, this method trains an individual model
for each objective. Since there are m feedback types, it has m in-
dividual models, f1, ..., fm. The final model is the combination of

fi, ..., fm. A simple combination is the weighted linear combina-
tion, such that the final model f(x;,8) = 227", w; - f;(xi, B5),
where w; is the weight parameter to control the tradeoff between
different objectives and 3; is the model coefficient for the model j,
where j = 1,...,m. This method can train the models in parallel
and compose the final model in the end.

Besides training the individual models in parallel, we also ex-
plored a sequential training method. Let L be the loss function for
the training algorithm for each feedback. We sequential solve the
model coefficients 31, ..., 8, by the following series of optimiza-
tion problems,

N
I%EHZL(XWE”;&),
=1

N
r%lnzLxhyz 75])+w_7“ﬂ] ﬂj*1|‘27
=1

]=2,...m

The final model is the last model with coefficient (3,,,. The idea of
this method is to utilize the previous model as the prior to regu-
larize the next model, so that the training result from the previous
model can be transmitted to the next model. The final recommen-
dation model is the last model that should contain the information
of all the m models. Thus, we call this method as prior combine.
Some literatures also mention this method is a warm-start training,
in which they consider the old model as the prior or starting point,
and use the new training data to train the new model. It is worth
to mention that the method has two assumptions. First, the prior
model’s coefficient is a multivariate normal distribution and sec-
ond the variance of each dimension is identical and determined by
the inverse of w;. However, the assumption may not exist in many
high dimension data. In practice, it is very common that some of
the features are sparse and some of the features are dense in real
world high dimensional data. Thus, the associate coefficients have
very distinct variances.

The third method is the joint training, where all types of feed-
back are utilized in a single joint optimization problem for the final
model. The general form is,

manL X’H (1)5 vyz(m)’ﬁ)7

where L is the joint loss function. There are lots of different ap-
proaches to compose the joint loss L. For instance, L is a linear
combination of a logistic loss and a constraint loss (e.g., the hinge
loss). In this instance,

L(xi,yV,y?) = wi - log(1+ exp(—y" - f(xi,8)))

—+ws - maX(O y(2)(6+ f(xlvﬁ)))7

where w1, wey are the weight parameters, c is a given positive pa-
rameter, and y<) is a strong negative feedback from users (e.g.,
hide and dismiss). The hinge loss, max(0, y(2>(+ f(xi,5))),
forces the ranking score f(x;,5) < —cif y§2) = 1. Thus, it is
a constrained optimization. It aims to minimize the loss from the
primary feedback yil) subject to the constraints f(x;,3) < —c
if y(2) = 1. The weight wy determines the hardness of the con-
straints. If wo is an arbitrary large number, the constraints are hard

constraints. Similarly, if yZ@) is a strong positive feedback from

users (e.g., like or apply a job), an example of L is

L(xi,y ", yP) = wi-log(1 4+ exp(—y!" - f(xi,8)))
+ws - max(0, .7 (¢ — f(xi, 8))),

— f(xi,8))), forces the rank-

ing score f(x;,) > cif y§2) = 1. It is common that a recommen-
dation model has one primary type of feedback (e.g., click) with
other secondary types of feedback (e.g, hide and dismiss). The sec-
ondary types of feedback are either strong positive or strong neg-
ative, so we utilize them as constraints to regularize the primary
feedback optimization problem. This method is called constrained
regression in this paper. In many applications, different types of
user feedback may have some correlation. For instance, in the
LinkedIn feeds, the click and like are positive correlated, while the
click and hide are negative correlated. In these situations, the con-
straints from the secondary types of feedback can help the learning
algorithm better regularize the primary feedback learning. At the
same time, the primary feedback also helps the learning algorithm
find more reliable solutions subject to the constraints. This correla-
tion of feedback is quite useful in some practical scenarios because
the strong negative or positive feedback is often very rare in online
systems. For instance, the total number of received clicks can be
more 100 times larger than the total number of received hides in a
same time period. Such rare feedback can hardly build a good rec-
ommendation model. But if we add a large amount of correlated
feedback data to train jointly, the model performance can be im-
proved. In machine learning, this technique is defined as Transfer
Learning [9, 34, 13, 3, 4, 5, 29], in which each feedback refers to a
domain. In the experimental section, we will discuss several cases
where this transfer learning works and several other cases where
it does not work based on LinkedIn data. Table 1 shows several
loss functions that are widely used in our recommendation models,
where y; is the label of a feedback and x; is the corresponding fea-
ture vector of the impression. The last loss is a pairwise loss, where
x is the feature vector of another impression.

where the hinge loss, max (0, yi (c

Table 1: Loss Function

Loss Function Name
Logistic Loss
Square Loss

Loss Function
log(1 + exp(—y:f(x:,6)))
lyi — f(xi, B)I°

1 —1I(sign(y; - f(xi,3))) 0-1 Loss

max (0, yi(c + f(xi,0))) Hinge Loss

max(0, y;(c + f(x:,8)))* Squared Hinge Loss
max (0, y;(f(xi, 8) — f(xi,3))) Pairwise Hinge Loss

The three methods have various advantages and disadvantages
in different data sets. prior combine takes the trained results from
the previous model to regularize the next model’s fitting. It has
an initiative explanation based on Bayesian inference. model com-
bine trains different models separately, where each model only has
one objective so its training can easier coverage to its own optimal
solution. constrained regression is a joint training, which utilizes
multiple types of feedback together and is potentially to obtain a
better joint optimal solution. It is difficult to theoretically deter-
mine which method is the best one in different particular cases.
In this paper, we only focus on the empirical evaluation based on
LinkedIn data.

4. IMPLEMENTATION

The offline training data is collected from a random bucket of
users, where the historical recommended items are randomly se-

lected to the users in order to avoid the sample bias and serving
bias. In the algorithm implementation, we only focus on the convex
loss function of L. In order to speed up the offline model training,
we apply the coordinate gradient descent algorithm [39]. This al-
gorithm minimizes the total loss function along one dimension at a
time. On each dimension, it only goes one step along the opposite
gradient direction. Recent studies have shown that the efficiency of
this coordinate-wise optimization method is superior to many con-
vex optimization algorithms in practice [39, 19]. Another advan-
tage of this algorithm is that, it does not need to employ the back-
tracking linear search [33] to calculate the appropriate step size.
Instead, it fixed the step size to be the inverse of the Lipschitz con-
stant [6] of VL. The Lipschitz constant of VL provides an upper
bound of the step size on each dimension, which is not conservative
in coordinate-wise algorithms. We found this trick can significantly
improve the efficiency of the algorithms in our model training.

Let d be the dimensionality of the data space, 3 denote the
i-th element of the vector 3, and I; be the Lipschitz constant of

%, i =1,2,...,d. Algorithm 1 presents the pseudocode of the

Algorithm 1 Coordinate Gradient Descent with Lipschitz Constant

Input: P: training data, e: tolerance parameter.

1: B+ 0
20 ||VL|init < [IVL(B)I|
3: while |||VL(B)|| > €||VL||init do
4: fori=1,2,...,ddo oL
. i i 1
5: ’8()<;B()7E.85(7")
6: end for
7: end while

algorithm, where each dimension’s Lipschitz constant /; is precom-
puted before entering the algorithm, e is the tolerance parameter for
the stopping criteria, which is the same definition for libLinear and
1ibSVM !. This algorithm is flexible since it only requires the first
order information of the total loss function L and the Lipschitz con-
stant of V L. In this paper, for the offline experiments, the training
algorithm is implemented in a single machine. For the online A/B
testing, we apply the large scale of distributed optimization algo-
rithm ADMM to scale up the production model training [12].

S. EXPERIMENTS

We present the empirical evaluation to answer the following im-
portant questions for recommendation with multiple types of feed-
back. First, what kind of feedback is feasible to be incorporated in a
practical recommendation model? Second, how to select a suitable
method for a particular application? Third, how do the different
approaches perform for the real applications?

5.1 Complaints in LinkedIn Emails

Email is one of the most useful channel to improve the user
engagement in social network industry. LinkedIn email recom-
mender system aims to rank LinkedIn email candidates, such as
news article content, “people you may know” and job postings, and
then send top ranked emails to members. The primary feedback
is click/non-click from members after they receive the emails. At
the same time, the system records other types of feedback, such as
complaints. The complaints include the actions of unsubscribing
and labeling emails as spams. While the system optimizes CTR
to boost member engagement, it is also desirable to minimize the
complaints from the users. As described in Section 3, in this prob-
lem the number of types of user feedback is m = 2, click and

"https://www.csie.ntu.edu.tw/ cjlin/liblinear/

complaint. The objective is to maximize the CTR and minimize
the complaint rate for each sent email.

We investigate the three potential methods described by Sec-
tion 3 in the email recommendation experiment. For prior com-
bine, we implement two algorithms, “Prior Combine(Click)" and
“Prior Combine(Complaint)", where the first one uses the click
data to train the prior model and the second one uses the com-
plaint data to train the prior model. For constrained regression,
we also implement two algorithms, “Constrained(Complaint)" and
“Constrained(Click Complaint)", where the first one only uses the
complained emails as the constraints and the second one uses both
clicked and complaints emails to establish the constraints. We tested
the squared hinge loss and logistic loss for the click and complaint
feedback, but there is no significant difference for the experimental
results. For each algorithm, we vary the weight parameter w; and
regularization weight A for model training. As a result, for each
approach, we obtain 60 - 70 models based on different parameter
combinations.

5.1.1 Data

The training and testing data is from the historical logs of a ran-
dom bucket, i.e., the system randomly sent emails to a group of
members and recorded their feedback. Thus, there is no serving
bias for the training and testing data. We use around 2.5K features
to build the recommendation model for this study. The features
mainly consists of the member features, content features and inter-
action features. The member feature includes the member’s profile
data, such as the job title, education, company and industry cate-
gory. The content features describe the content of the emails that
we want to notify the member. The interaction feature represents
the interests of a particular type of member to a particular category
of emails. Table 2 summarizes the details of the data sets. We split
the training data and testing data by the member Ids, so that there
is no member who both appears in the training and testing data.

Table 2: Email Relevance Modeling Data Summary

Feedback #Members for Training # Members for Testing
Click 350K 1.2M
Complaint 460K 1.3M

5.1.2 Performance Metrics

The evaluation metric is AUC (Area Under ROC curve) [11].
An intuitive explanation of the AUC is the probability of a posi-
tive instance being ranked higher than a negative instance. Since
there are two types of feedback, we consider the click AUC and
non-complaint AUC at the same time to evaluate the model per-
formance. The non-complaint is the opposite of the complaint. If
the user did not complaint an email, the non-complaint feedback
is 1, otherwise it is 0. Minimizing the complaint rate is equiva-
lent to maximizing the non-complaint rate. A clicked email should
have a higher ranking score than a non-clicked email. A non-
complained email also should have a ranking higher core than a
complained email. Therefore, click AUC and non-complaint AUC
are higher,then the model performance is better. If model A has a
both higher click AUC and non-complaint AUC than another model
B, then we are sure that model A is better than model B. In multi-
objective optimization, we say model A dominates model B [35].
If model A has a higher click AUC but a lower non-complaint AUC
than model B, then we do not know A is better or worse than B.
In this paper, our goal is to evaluate the potential training methods,
not particular models, because two models with different tradeoffs

may not be comparable. Since we vary different weights of click
and non-complaint feedback, the tradeoff between the click AUC
and the non-compliant AUC is also varied. If an algorithm P gener-
ates more models that dominate the models generated by algorithm
@, then we can say the algorithm P is better than () in most cases.

5.1.3 Experimental Results

Figure 1 shows the click AUC and non-complaint AUC of each
training method on the test data sets. To protect the user privacy, we
show the experiment results in terms of normalized AUC. The nor-
malized click AUC is the click AUC divided by the click model’s
AUC, where the click model is trained only by the click data. Like-
wise, the normalized non-complaint AUC is the non-complaint AUC
divided by the complaint model’s AUC, where the complaint model
is trained only by the complaint data.

As shown by Figure 1, we observe that incorporating complaint
feedback does not hurt our model’s CTR performance too much,
but it significantly decreased the complaint rate more than 40% in
some area. The constrained regression and model combine have the
best tradeoff between the click AUC and non-complaint AUC. They
can improve the non-complaint AUC from 0.4 to 0.7 by sacrificing
the click AUC as little as 0.18. For other methods, to achieve the
same non-compliant AUC, they have to sacrifice larger click AUC.
It is worth to note that the constrained regression with only com-
plaint constraints performs worse rapidly when the weight for com-
plaints becomes large. This is because when the complaint weight
is larger, the regression algorithm spends more much effort to fit
the complaint data points. As a result, the entire data set becomes
highly imbalance with more negative feedback. If we put both click
and complaint data points into the constraints, constraints set are
well balanced as shown by “Constrained(Click Complaint)”, then it
performs better than “Constrained(Complaint)". The performance
of data combine approach is almost identical to constrained regres-
sion. The two algorithms based on prior combine perform much
worse than the other algorithms. This is because this prior com-
bine method only utilizes the coefficient mean of the prior model
into the L2 regularizer for the next model training. As we discussed
in Section 3, the assumption that the prior model coefficient is a
multivariate normal distribution and each dimension has an iden-
tical variance may not hold. In the email data, some member and
content features are very sparse or very dense so that the corre-
sponding coefficients should have very different variances. Using
an inappropriate prior can make the final model worse.

In practice the size of the secondary feedback varies a lot in dif-
ferent applications and time periods, to illustrate the the situation
that the secondary feedback data is scarce, we randomly sample
only 100 complained emails for training in the experiments. Figure
2 shows another AUC comparison for all the methods. As shown in
the figure, constrained regression shows a better tradeoff curve of
click AUC and non-complaint AUC than other methods. In other
words, for the same AUC on non-complaints, constrained regres-
sion models show a higher AUC on the click feedback. For exam-
ple, for the models with non-complaint AUC 0.85, the constrained
regression models achieve around 0.99 on normalized click AUC,
while the model combine models only achieve around 0.96. Since
there are only 100 complained data points, the model for predicting
complaint feedback has a high variance, which also hurts the per-
formance of the combined model. A few outliers in the 100 data
points can ruin the entire compliant model in model combine. On
the other hand, constrained regression is a joint training that uses
the click data and complaint data together. The large number of
click data can regularize the joint model to be more robust to these
outliers in complaint data. By this way, the correlation between the

Click AUC vs Non-Complaint AUC

1.1
L0 G DD G . : i E
2,
%

09l o a9 ,
e} a v
2 °
S 08l RS . * A ; Vo i
3] N
g ¢ Y
= 07F - - - 1
: e
5 °
z 0.6l * * Prior Combine(Complaint) s J

e Prior Combine(Click)
v v Model Combine
05M 4 a Constrained(Complaint) 1
¢ Constrained(Click Complaint)
04 1 1 1 i i
0.5 0.6 0.7 0.8 0.9 1.0 1.1

Normalized Non-Complaint AUC

Figure 1: AUC Tradeoff on Email Data

click feedback and complaint feedback help constrained regression
achieve better performances than model combine.

Click AUC vs Non-Complaint AUC

1.05
1.00f- o QWO)": o ; : J
> METRALN
* A\ o
0.95} w...$: ,
o w A
2 v
< w
< 090} ; il
2] AT
EOSS* 4 vy ° |
5 0.
E A\ 4
g v" ’4
. . A v,
0.80} * * Prior Combine(Complaint) ve |
e e Prior Combine(Click) 5
P v v Model Combine v
0.75})) J
A A Constrained(Complaint) o
¢ ¢ Constrained(Click Complaint) 2
0.70 L I I L

I I I
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Normalized Non-Complaint AUC

Figure 2: AUC Tradeoff on Email Data (100 Complaints in Train)

5.2 Hides in LinkedIn Feeds

LinkedIn feeds are mainly ranked by relevance models, which
aim to maximize the user engagement and other business metrics.
The user engagement is represented by the number of user clicks
on feed items, which also include like, share, comment and other
social actions. We apply the logistic regression model to predict the
click probability for each item, and then rank all feed items based
on the predicted click probabilities in descending order. Beside
like, comment, share and other positive feedback, the users can
also provide negative feedback by hiding certain feed items if they
do not want to see certain feed updates again. The hide action is
a strong negative feedback for user experiences. Therefore, while
the ranking system optimizes CTR of feeds, it is also important to
eliminate the future user’s hide feedback to minimize the negative
impact to user experience.

Top 1: CTR vs Non-Hide Rate

Top 3 : CTR vs Non-Hide Rate

Top 5 : CTR vs Non-Hide Rate

11

=
o
5

1.05,
10 ..o . 100 CXRRA o vy
LB 4 g' g § J ::00 d)&)sgﬂ IFOOWY% o
MER 095 . 3 B o
9
0 9 %o B
§ 9 . P 095 « W
o«)4 v « 0.90 ** o« *
6 s H i B £ @ & o m
&
§ ¢ 0 E 0.85 b ¥ E 0.90) h v
T Ay B M T Py
£o7 Koy ¥ £ bad £ T
2 M 2 0.80 N 2 o
0.85
0.6}/ * * Prior Combine(Hide) X' o3 * * Prior Combine(Hide) W ® + + Prior Combine(Hide) M
o o Prior Combine(Click) R '. 2 075H 6 o Prior Combine(Click) “ o o Prior Combine(Click) M w
0s v v Model Combine v v Model Combine “" 0.80| ¥ ¥ Model Combine :’
“[l4 a Constrained(Hide) M [4 0.70Ha & Constrained(Hide) 008 WY 4 & Constrained(Hide) we "1:
¢ ¢ Constrained(Click Hide) ¢ ¢ Constrained(Click Hide) 000 ¢ ¢ Constrained(Click Hide) oo
0.4 0.65

T
0.9985

T
0.9990

L
0.9995

Normalized Non-Hide Rate

L
1.0000

T
0.9992

T T
0.9994 0.9996

Normalized Non-Hide Rate

L
1.0000

0.75
0.0000

T T
0.0001 0.0002

Normalized Non-Hide Rate

L
0.0003

L
0.0004 0.0005

+9.996e-1

(a) Top 1 Position

(b) Top 3 Positions

(c) Top 5 Positions

Figure 3: CTR and Non-HideRate Tradeoff on Feed Data

We investigate the three methods described by Section 3 in this
experiment. Like the LinkedIn email experiment, for prior com-
bine, we implement two algorithms, “Prior Combine(Click)" and
“Prior Combine(Hide)", where the first one uses the click data to
train the prior model and the second one uses the hide data to
train the prior model. For constrained regression, we also imple-
ment two algorithms, “Constrained(Hide)" and “Constrained(Click
Hide)", where the first one only uses the hidden impressions as the
constraints and the second one uses both clicked and hidden im-
pressions to establish the constraints.

5.2.1 Offline Experimental Results

The training data and testing data are summarized in Table 3.
Both data sets are sampled from the historical impressions of a ran-
dom bucket, where we randomly shuffle the ranking list of feeds to
a small group of users and collect the feedback in order to avoid
the sample bias. The number of features is around 4.5K, which in-
clude the member profile features, item’s features, and member’s
past behaviors etc. [2] lists the details of the LinkedIn feeds rank-
ing model in production systems. Since in feed ranking, different

Table 3: Click and Hide Feed Modeling Data Summary

Feedback #Impression for Training #Impression for Testing

Click 810K 64.6M

Hide 410K 1.3M

feed positions have different biases to the CTR and hide rate, we
select to use precision at top K as the evaluation metric instead of
AUC, because AUC estimates the classification accuracy of items
without considering the feed position. Based on the ranking order
of feeds from each model, the CTR and hide rate on top K posi-
tions are calculated for each model. If a model A has a higher CTR
and a lower hide rate than model B by precision at top K, then the
model A is better than model B, and A dominates B. For each
potential method, we vary different weight parameters and also the
regularization weights for model training. As a result, we gener-
ate 60 - 70 models for each method based on different parameter
combinations.

Figure 3 shows the CTRs and non-hide rates for top 1, 3 and
5 positions by precision at top K, K = 1,3, 5 respectively. The
non-hide feedback is the opposite of the hide feedback. To pro-

tect the user privacy, we only show the normalized CTR and non-
hide rate in this paper. The normalized CTR is the CTR divided
by the click model’s CTR, where the click model is trained only
based on the click data. Likewise, the normalized non-hide rate is
the non-hide rate divided by the hide model’s non-hide rate, where
the hide model is trained only based on the hide data. The com-
parison results are similar as in the experiment for the email rec-
ommendations. prior combine performs much worse than other
methods. constrained regression shows slight better tradeoffs than
model combine on the high non-hide rate areas. It is also interesting
to see that, some constrained regression models have higher non-
hide rates than the hide model that is trained purely based on the
hide feedback data. This observation reveals the effect of transfer
learning, because the click action and non-hide action have a cer-
tain correlation. The large mount of click feedback data helps the
joint model to build a better prediction on hide actions.

5.2.2 Online A/B Testing Results

To further study the performance of these methods, we conduct
online A/B testing experiments in LinkedIn production systems.
‘We launch 4 models of constrained regression, where each model is
randomly allocated to serve a certain percentage of LinkedIn desk-
top users. It is worth to note that the members in the training data
has no intersection with the members in the online testing. This
A/B testing lasts for one week. We set the weight parameter wo for
the constraints according to a:

0 ifa=0
DLN(;ick

N (1—a)

Wo =

1
if « >0, M

hide

, where N, , is the number of negative click data points and
N,,4e 1s the number of negative hide data points (or the hided
items) in the training data. Meanwhile, w; = 1 — w> is the weight
for the logistic loss of the click data. « can be explained as the ratio
of the constraint loss to the entire loss from negative data, therefore,

it is more intuitive than directly setting up the wa.

The online testing experiment is deployed on two types of LinkedIn

homepage. The first one is the old LinkedIn homepage, which has
lower CTRs and hide rates, but the online traffic is large. The other
one is the new homepage, which has a smaller online traffic but
higher overall user engagements in terms of CTRs and hide rates.
Tables 4 and 5 show the online results of the online experiment

in the two types of LinkedIn homepage respectively. The control
model is the one with o = 0, i.e., the control model is trained
only with the click data. The CTR and hide rate are calculated in

Table 4: Feed Online A/B Testing Result in Old Homepage

« CTR Lift Hide Rate Reduction

0 0 0
0.1 1.1% 1.8%
02 0.8% 4.2%

0.5 0.02% 3.6%

Table 5: Feed Relevance Online A/B Testing in New Homepage

« CTR Lift Hide Rate Reduction

0 0 0

0.1 2.6% 6.4%
02 2.0% 5.0%
0.5 52% 12.5%

the page view level, which are the total number of clicks or hides
divided by the total number of page views. As shown in the two
tables, the CTRs have a small positive lift compared against the
control model. It shows that the hide feedback provides additional
signals about the member’s interest that benefit the click modeling.
Meanwhile, the three experimental models decrease the hide rate
from 1 to 12 percent. Although the effect of hide rate decreasing
is not as large as offline experiments, it is clear enough to demon-
strate that this method can successfully incorporate the hide feed-
back without losing CTR in a real online system.

5.3 Viral Action in LinkedIn Feeds

Like, share and comment are called viral action in LinkedIn
feeds, because these actions can generate the new feed updates for
the user’s neighbors, such as “X shared an article Y", “Y liked an
post of Z". Therefore, encouraging viral actions can improve the
liquidity of the social network. In LinkedIn feeds, viral actions
are more important than the other click actions, such as pure click,
connect, follow and play. However, the volume of pure click feed-
back is much larger than the volume of viral actions in LinkedIn
feeds. We cannot only use the viral action feedback to train the
ranking model because it would lose plenty of useful signals from
the clicks. It is worth to mention that the viral action is a subset of
the click action. There are other types of click actions that do not
generate new feed updates in the social network.

The objective of the ranking model is to maximize the CTR and
viral action rate simultaneously. Compared with the hide action,
the viral action is more correlated with the click action since the
viral action is a subset of the click action.

Table 6 summarizes the volume of the training data and testing
data in the experiment. The features of the feed ranking model are
same as in the previous experiment for hide actions. The details of
the model can be found in [2].

Table 6: Click and Viral Action Feed Data Summary

Feedback

#Impression for Training #Impression for Testing

Click IM 29.5M

Viral Action 1M or 2M 29.5M

In this experiment, the constrained regression algorithm consid-
ers the click data as the primary feedback and put viral actions as

positive constraints. prior combine still has two algorithms that
consider the click model and viral action model as the prior respec-
tively. We vary the weight parameters to obtain various tradeoff
between the CTR and viral action rate for each algorithm.

The performance metric is still the precision at top K for clicks
and viral actions. Due to the space limitation, we only show the
experimental results of K = 1.

Viral Action Rate vs CTR

1.02
v
1.0} ; - M‘O =
v ¥ on OB
bl e ®
v > * -
v Ak
0.98| - ; . . : B Bk e o
E v * *'k
vy
o
3 .
N 0.96f -
g o K
S
=z o 00
0.94p - H . . . "
4 A * Lot
* x Model Combine N
0.92L|® e Constrained B 4
*
v v Prior Combine(Viral) - Aﬁ o
A A Prior Combine(Click)
090 1 1 1 i i i
0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01

Normalized Viral Action Rate

Figure 4: Top 1 Position : CTR and Viral Action Rate (1M Viral
Actions in Train)

Viral Action Rate vs CTR

1.02 . T T
1.00} - . - . vﬁdf ;
aka i O
*a% 0% 00
v e 0%
Fx » (3]
L v ; *
. 0.98 fi e o o8
6 , ot
3 v * @
& 0.06] '8
£ 4
[}
P-4
0.94f & “
N L 4 I
* * Model Combine A
. A
0.921| ® e Constrained ; L ha #
v v Prior Combine(Viral) o
A A Prior Combine(Click)
0.90 L i

I I I i i i
093 094 095 096 097 098 099 1.00 1.01 1.02
Normalized Viral Action Rate

Figure 5: Top 1 Position : CTR and Viral Action Rate (2M Viral
Actions in Train)

Figures 4 and 5 show the experimental results for all experimen-
tal models, where the number of viral action training data is 1M
and 2M respectively in the two figures. To protect the user pri-
vacy, we only show the normalized CTR and normalized viral ac-
tion rate. The normalized CTR is the CTR divided by the click
model’s CTR, where the click model is trained only based on the
click data. Likewise, the normalized viral action rate is the viral
action rate divided by the viral model’s viral action rate, where
the viral model is trained only based on the viral action data. It

is clear to see that constrained regression achieved a better trade-
off than other algorithms in both figures. For example, to achieve
1.0 normalized viral action rate, constrained regression models can
maintain 98% of the original CTR, however, model combine needs
to lose 4% CTR.

Recall that in the previous experiment on hide actions, constrained
regression and model combine have similar performances. How-
ever, in this experiment, constrained regression performs better
than model combine. It is probably because the correlation between
the click and viral action is larger than the correlation between the
click and hide action. Therefore, constrained regression obtains a
bigger gain from the joint training. Currently, LinkedIn feed pro-
duction system adopts the model combine method to promote viral
actions in both desktop and mobile platforms. The major reason
is that, model combine only needs to train two individual models
and vary the weights to obtain various tradeoffs, but constrained
regression requires to retrain the joint model for each weight pa-
rameter and tradeoff. In future, we will conduct the A/B testing
experiments to evaluate constrained regression for the click/viral
action tradeoff in production systems.

In summary, for the three potential methods, model combine and
constrained regression have a clear better performance than prior
combine. If the multiple types of feedback has a certain correla-
tion and some type of feedback has very small data, constrained
regression performs better than model combine.

6. RELATED WORK

Multi-Criteria Recommendation: Many product recommender
systems has different ratings for one product, such as story rat-
ing and the visual effect rating for one movie. Users also have
different interests and preferences on those aspects. The goal of
multi-criteria recommender systems is to maximize interests of all
aspects interests at the same time. To achieve this goal, collabora-
tive filtering based algorithms and content based algorithms have
different approaches. Collaborative filtering based algorithms con-
struct a rating vector of a user provide for an item. Each user’s
neighbors are computed based on their rating vectors to items, in-
stead of a single rating variable [26, 1]. The preferences on differ-
ent rating aspects can be substitute as the weights into the distance
function of two rating vectors. Content based algorithms are based
on the feature based learning models to predict the user interests.
When the user has multiple interests, it can naturally build multiple
learning models for predicting those interests [35]. For each user,
the algorithms selects the Pareto optimal items to recommend [32].
Those work are similar to the model combine and response com-
bine methods in this paper. They do not explore the benefit of the
dependent responses to the user modeling. Besides the accuracy of
the user interests, many research studies also consider some item’s
criteria, such as the item diversity [42, 27] and the novelty [25, 23,
18]. Other criteria including confidence, trust, risk, robustness, and
privacy are also mentioned in the survey [37]. Those criteria are the
constraints for the recommended items. Our work in this paper fo-
cuses on the criteria from the user’s explicit feedback or response.

Transfer Learning: Another related field is transfer learning. Transfer

learning approaches can be mainly categorized into three classes.
A popular class of transfer learning methods is instance-based [7,
14, 30, 8, 22, 16, 38], which assumes that certain parts of the
data in the source domain can be reused for the target domain by
re-weighting. [24] proposed a heuristic method to remove “mis-
leading" training instances from source domain so as to include
“good" instances from labeled source-domain instances and unla-
beled target-domain instances. [14] introduced a boosting algo-
rithm, TrAdaBoost, which assumes that the source and target do-

main data use exactly the same set of features and labels, but the
distributions of the data in the two domains are different. TrAd-
aBoost attempts to iteratively re-weight the source domain data and
target domain data to reduce the effect of the “bad" source data
while encourage the “good" source data to contribute more for the
target domains. [7] proposed a framework to simultaneously re-
weight the source domain data and train models on the re-weighted
data with a kernel logistic regression classifier.

Another category of approaches can be viewed as model-based
approaches [36, 28, 17, 10], which assumes that the source tasks
and the target tasks share some parameters or priors of their mod-
els. An efficient algorithm MT-IVM [28], which is based on Gaus-
sian Process (GP), was proposed to handle multi-domain learning
case. MT-IVM tries to learn parameters of GP over multiple tasks
by assigning the same GP prior to the tasks. Similarly, Hierarchi-
cal Bayes (HB) is used with GP for multi-task learning [36]. [17]
borrowed the idea of [36] and used SVMs for multi-domain learn-
ing. The parameters of SVMs for each domain is assumed to be
separable into two terms: a common term across tasks and a task
specific term. [31] proposed a consensus regularization framework
for transfer learning from multiple source domains to a target do-
main.

The third category of transfer learning approaches are feature
based. [9, 34, 13, 3, 4, 5, 29], where a feature representation
is learned for the target domain and used to transfer knowledge
across domains. A structural correspondence learning (SCL) algo-
rithm [9] is proposed to use unlabeled data from the target domain
to extract features so as to reduce the difference between source
and target domains. A simple kernel mapping function is intro-
duced in [15], which maps the data from both domains to a high-
dimensional feature space. [34] proposed to apply sparse coding,
an unsupervised feature construction method, to learning higher
level features across domain. On the other hand, heterogeneous
transfer learning starts to attract attention very recently. We notice
that [41] extends PLSA to a specific application, using social Web
data to help image clustering; [40] proposes a manifold alignment
based approach for heterogeneous domain adaptation; [21] formu-
lates heterogeneous transfer learning as multi-task and multi-view
learning and proposes a graph-based solution; [20] focus on sin-
gle task learning with multiple outlooks, which is also related to
heterogeneous transfer learning.

7. CONCLUSION

Learning multiple user feedback in a recommendation model has
become an important challenge for recommender systems. Related
research on multiple feedback is relatively new in the empirical
study of recommender systems. This paper presents an empirical
study on the methods for incorporating multiple types of user feed-
back into a single recommendation model. We investigate three
common training methods, prior combine, model combine and con-
strained regression in this study. We conduct extensive experiments
based on LinkedIn products and real historical data. In the ex-
periments, we show how to use the methods to find the various
tradeoff of the click/complaint in LinkedIn email recommendation,
click/hide and click/viral action in LinkedIn feeds ranking. Based
on our experimental results, prior combine does not perform well
since its assumption for the prior model and prior distribution often
does not hold in many real data. If each user feedback has enough
training data, the performance of model combine and constrained
regression are very close. But if some feedback data is rare, another
feedback data is large, and the two types of feedback have a certain
correlation, then constrained regression performs better than model
combine. In this situation, constrained regression is actually doing

a transfer learning. The correlated two types of feedback data help
the model to better regularize the fitting on each other.

In addition to the offline experiments with historical data, we
also conduct the online A/B testing for evaluating the constrained
regression method for click/hide problem in LinkedIn feeds rank-
ing based on a large amount of real users. The online A/B testing
results also confirm the effectiveness of this method. The launched
models can reduce 12% of the hide rate without hurting the CTR
comparing against the control model.

As for the future work, we consider more advanced joint training
methods to incorporate multiple types of feedback into recommen-
dation, such as the constrained matrix factorization in collaborative
filtering based on recommendation. Also, we continue to explore
more advanced methodologies from transfer learning into the mul-
tiple feedback recommendation and utilize the relationship of dif-
ferent types of feedback to provide more accurate personalized rec-
ommendation. Meanwhile, we will continue to explore and solve
other problems of the multiple types of feedback recommendation.
For instance, in LinkedIn job recommendation, the user can apply a
job or dismiss the job posting, where apply/not apply is the primary
feedback and dismiss/not dismiss is a secondary feedback.

8. REFERENCES

[1] G. Adomavicius and Y. Kwon. New Recommendation
Techniques for Multicriteria Rating Systems. IEEE Expert /
IEEE Intelligent Systems, 22:48-55, 2007.

[2] D. Agarwal, B.-C. Chen, Q. He, Z. Hua, G. Lebanon, Y. Ma,
P. Shivaswamy, H.-P. Tseng, J. Yang, and L. Zhang.
Personalizing linkedin feed. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, pages 1651-1660, 2015.

[3] R. Ando and T. Zhang. A high-performance semi-supervised
learning method for text chunking. In Proceedings of the
43rd Annual Meeting on Association for Computational
Linguistics, pages 1-9. Association for Computational
Linguistics Morristown, NJ, USA, 2005.

[4] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature
learning. In Advances in Neural Information Processing
Systems: Proceedings of the 2006 Conference, page 41. MIT
Press, 2007.

[5] A. Argyriou, C. Micchelli, M. Pontil, and Y. Ying. A spectral
regularization framework for multi-task structure learning.
Advances in Neural Information Processing Systems, 20,
2008.

[6] A.Beck and M. Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202,
20009.

[7] S. Bickel, M. Briickner, and T. Scheffer. Discriminative
learning for differing training and test distributions. In
Proceedings of the 24th international conference on Machine
learning, pages 81-88. ACM New York, NY, USA, 2007.

[8] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. Wortman. Learning bounds for domain adaptation.
Advances in Neural Information Processing Systems, 20,
2008.

[9] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation
with structural correspondence learning. In Proceedings of
the Empirical Methods in Natural Language Processing
(EMNLP), 2006.

[10] E. Bonilla, K. Chai, and C. Williams. Multi-task gaussian

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

process prediction. Advances in Neural Information
Processing Systems, 20:153-160.

R. R. Bouckaert. Efficient AUC learning curve calculation.
In AI 2006: Advances in Artificial Intelligence, 19th
Australian Joint Conference on Artificial Intelligence,
Hobart, Australia, December 4-8, 2006, Proceedings, pages
181-191, 2006.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1-122, 2011.

W. Dai, G. Xue, Q. Yang, and Y. Yu. Co-clustering based
classification for out-of-domain documents. In Proceedings
of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 210-219.
ACM New York, NY, USA, 2007.

W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfer
learning. In Proceedings of the 24th international conference
on Machine learning, pages 193-200. ACM New York, NY,
USA, 2007.

H. Daume. Frustratingly easy domain adaptation. In Annual
meeting-association for computational linguistics,

volume 45, page 256, 2007.

H. Daume III and D. Marcu. Domain adaptation for
statistical classifiers. Journal of Artificial Intelligence
Research, 26:101-126, 2006.

T. Evgeniou and M. Pontil. Regularized multi-task learning.
In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
109-117. ACM New York, NY, USA, 2004.

F. Fouss and M. Saerens. Evaluating performance of
recommender systems: An experimental comparison. In Web
Intelligence and Intelligent Agent Technology, 2008.
WI-IAT’08. IEEE/WIC/ACM International Conference on,
volume 1, pages 735-738. IEEE, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization
paths for generalized linear models via coordinate descent.
Journal of statistical software, 33(1):1, 2010.

M. Harel and S. Mannor. Learning from multiple outlooks.
In L. Getoor and T. Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learning (ICML-11),
ICML ’11, pages 401-408, New York, NY, USA, June 2011.
ACM.

J. He and R. Lawrence. A graph-based framework for
multi-task multi-view learning. In L. Getoor and T. Scheffer,
editors, Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages 25-32, New
York, NY, USA, June 2011. ACM.

J. Huang, A. Smola, A. Gretton, K. Borgwardt, and

B. Scholkopf. Correcting sample selection bias by unlabeled
data. Advances in neural information processing systems,
19:601, 2007.

N. Hurley and M. Zhang. Novelty and diversity in top-n
recommendation—analysis and evaluation. ACM Transactions
on Internet Technology (TOIT), 10(4):14, 2011.

J. Jiang and C. Zhai. Instance weighting for domain
adaptation in NLP. In Annual meeting-assosciation for
computational linguistics, volume 45, page 264, 2007.

N. Kawamae. Serendipitous recommendations via
innovators. In Proceedings of the 33rd international ACM
SIGIR conference on Research and development in
information retrieval, pages 218-225. ACM, 2010.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

K. Lakiotaki, N. F. Matsatsinis, and A. Tsoukias.
Multicriteria user modeling in recommender systems. /[EEE
Intelligent Systems, 26(2):64-76, 2011.

N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal
diversity in recommender systems. In Proceedings of the
33rd international ACM SIGIR conference on Research and
development in information retrieval, pages 210-217. ACM,
2010.

N. Lawrence and J. Platt. Learning to learn with the
informative vector machine. In Proceedings of the
twenty-first international conference on Machine learning.
ACM New York, NY, USA, 2004.

S. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning
a meta-level prior for feature relevance from multiple related
tasks. In Proceedings of the 24th international conference on
Machine learning, pages 489—496. ACM New York, NY,
USA, 2007.

X. Liao, Y. Xue, and L. Carin. Logistic regression with an
auxiliary data source. In MACHINE
LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, volume 22, page 505, 2005.

P. Luo, F. Zhuang, H. Xiong, Y. Xiong, and Q. He. Transfer
learning from multiple source domains via consensus
regularization. In CIKM *08: Proceeding of the 17th ACM
conference on Information and knowledge management,
pages 103—112, New York, NY, USA, 2008. ACM.

K. Miettinen. Nonlinear Multiobjective Optimization.
International Series in Operations Research & Management
Science. Springer US, 1999.

J. Nocedal and S. Wright. Numerical Optimization. Springer
series in operations research and financial engineering.
Springer, 1999.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng.

Self-taught learning: Transfer learning from unlabeled data.
In Proceedings of the 24th international conference on
Machine learning, pages 759-766. ACM New York, NY,
USA, 2007.

[35] M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani.
Pareto-efficient hybridization for multi-objective
recommender systems. In Proceedings of the Sixth ACM
Conference on Recommender Systems, RecSys "12, pages
19-26, New York, NY, USA, 2012. ACM.

[36] A. Schwaighofer, V. Tresp, and K. Yu. Learning Gaussian
process kernels via hierarchical Bayes. Advances in Neural
Information Processing Systems, 17:1209-1216, 2005.

[37] G. Shani and A. Gunawardana. Evaluating recommendation
systems. In Recommender systems handbook, pages
257-297. Springer, 2011.

[38] M. Sugiyama, S. Nakajima, H. Kashima, P. von Bunau, and
M. Kawanabe. Direct importance estimation with model
selection and its application to covariate shift adaptation.
Advances in Neural Information Processing Systems, 20,
2008.

[39] P. Tseng and S. Yun. A coordinate gradient descent method
for nonsmooth separable minimization. Mathematical
Programming, 117(1-2):387-423, 2009.

[40] C. Wang and S. Mahadevan. Heterogeneous domain
adaptation using manifold alignment. In IJCAI, pages
1541-1546, 2011.

[41] Q. Yang, Y. Chen, G.-R. Xue, W. Dai, and Y. Yu.
Heterogeneous transfer learning for image clustering via the
social web. ACL 09, pages 1-9, 2009.

[42] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In Proceedings of the 14th international

conference on World Wide Web, pages 22-32. ACM, 2005.

