
Ensemble Contextual Bandits
for Personalized Recommendation

Liang Tang Yexi Jiang Lei Li Tao Li
School of Computing and Information Sciences

Florida International University
11200 S.W. 8th Street, Miami, FL 33199

{ltang002,yjian004,lli003,taoli}@cs.fiu.edu

ABSTRACT
The cold-start problem has attracted extensive attention
among various online services that provide personalized rec-
ommendation. Many online vendors employ contextual ban-
dit strategies to tackle the so-called exploration/exploitation
dilemma rooted from the cold-start problem. However, due
to high-dimensional user/item features and the underlying
characteristics of bandit policies, it is often difficult for ser-
vice providers to obtain and deploy an appropriate algorithm
to achieve acceptable and robust economic profit.

In this paper, we explore ensemble strategies of contextual
bandit algorithms to obtain robust predicted click-through
rate (CTR) of web objects. The ensemble is acquired by
aggregating different pulling policies of bandit algorithms,
rather than forcing the agreement of prediction results or
learning a unified predictive model. To this end, we employ
a meta-bandit paradigm that places a hyper bandit over
the base bandits, to explicitly explore/exploit the relative
importance of base bandits based on user feedbacks. Ex-
tensive empirical experiments on two real-world data sets
(news recommendation and online advertising) demonstrate
the effectiveness of our proposed approach in terms of CTR.

Categories and Subject Descriptors:
H.3.3 [Information Search and Retrieval]: Information Fil-
tering; H.3.5 [Information Systems]: On-line Information
Services; I.2.6 [Computing Methodologies]: Learning

Keywords: Personalized Recommendation; Ensemble Rec-
ommendation; Contextual Bandit; CTR Prediction; Meta
Learning

1. INTRODUCTION
Personalized recommendation services aim to identify pop-

ular items and tailor the content according to users’ prefer-
ences. In practice, a large number of users or items might
be completely new to the system, which refers to the cold-
start problem [21]. This issue is often recognized as an ex-
ploration/exploitation problem, in which we have to find a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’14, October 6–10, 2014, Foster City, Silicon Valley, CA, USA.
Copyright 2014 ACM 978-1-4503-2668-1/14/10 ...$15.00.
http://dx.doi.org/10.1145/2645710.2645732.

trade-off between two competing goals: maximizing users’
satisfaction in a long run, while exploring uncertainties of
user interests [1]. For example, a news recommender should
prompt breaking news to users while maintaining user pref-
erences based on aging news stories.

The aforementioned issue is often modeled as a contex-
tual bandit problem [29]. A contextual bandit problem is a
series of trials with a fixed number of arms. In each trial,
the algorithm selects an arm to pull based on the given con-
text. By pulling an arm, it can obtain a reward, drawn from
some unknown distribution determined by the pulled arm
and the context. The objective of bandit algorithms is to
maximize the total obtained reward. In the cold-start situa-
tion, a recommender system does not have enough training
data to build the predictive model. In such a case, people
often use a bandit algorithm to solve the recommendation
problem, where each trial can be treated as a user visit, and
each arm is an item (e.g., a news article or advertisement).
Pulling an arm is recommending that item. A context is a
set of user features. The reward is the user response (e.g.,
a click), which is also determined by the recommended item
and user features. The objective of recommender systems is
to maximize the total user response, which is equivalent to
maximizing the total reward in bandit algorithms [13].

Recently, a series of algorithms have been reported to
tackle the multi-armed bandit problem, including unguided
exploration (e.g., ε-greedy [28], and epoch-greedy [12]) and
guided exploration (e.g., LinUCB [13], EXP4 [2], and Thomp-
son sampling [6]). These existing algorithms can achieve
promising performance under specific settings. The perfor-
mances of different policies vary significantly in many rec-
ommendation applications. A common practice of picking
the appropriate policy is to first evaluate these policies and
then select the best one to deploy. However, in the cold-
start situation, it is often difficult to conduct an unbiased
offline evaluation due to the deficiency of the historical data.
For online evaluation, e.g., A/B test, the user visit traffic
has to be split to multiple buckets for different policies, and
therefore the number of testing policies running in parallel
is restricted in order to obtain acceptable daily income.

In our work, we explore the possibility of utilizing en-
semble strategies to obtain a robust policy that can achieve
acceptable CTR in various recommender systems. As the
predictive result of each contextual bandit algorithm is the
pulled arm (item), it is not appropriate to adopt majority
voting or consensus prediction as the ensemble. We hence re-
sort to meta learning to build a hyper policy that adaptively
allocates the pulling chances to different base policies based

on the estimation of their performance. The proposed en-
semble bandit algorithms may not produce the optimal CTR
of base policies, but it can always approach to the best one,
which gives a robust mechanism for online personalized rec-
ommendation in the cold-start situations. In summary, the
contribution of our work is three-fold:

• We explore the possibility of stabilizing the CTR es-
timation of recommender systems by integrating the
advantages of different bandit policies.

• We propose two ensemble strategies to address the
cold-start problem in personalized recommender sys-
tems, which employ a meta-bandit learning paradigm
to achieve the robustness of the CTR.

• We conduct extensive experiments on real-world data
sets to demonstrate the efficacy of the proposed method
compared with other baseline algorithms. The results
show that our method is robust in terms of CTR.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe a brief summary of prior work relevant to
contextual bandit problems, ensemble recommendation and
meta learning. We then formulate the problem in Section 3,
and present the detailed algorithmic description in Section 4.
Extensive empirical evaluation results are reported in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. RELATED WORK
In our work, we employ ensemble strategies combined with

a meta learning paradigm to stabilize the output of contex-
tual bandit algorithms. In the following, we highlight the
previous research that are most relevant to our work.

Contextual Bandits: When predicting the CTR of web
data, the cold-start problem is often modeled as a contex-
tual bandit problem with exploration/exploitation trade-off,
where user features are regarded as contextual information.
Typical solutions of this problem involve unguided explo-
ration (e.g., ε-greedy [28], epoch-greedy [12]), guided explo-
ration (e.g., LinUCB [13], EXP4 [2]) and probability match-
ing (e.g., Thompson sampling [6, 22]). Most existing meth-
ods require either a parameter to control the importance of
exploration or prior information of Bayesian learning mod-
els; however in practice, it is difficult to determine the op-
timal value for the input due to the insufficiency of user
feedbacks. Hence, the prediction performance of these algo-
rithms is not stable along both exploration and exploitation
phases, unless the selection policy/model converges.

Ensemble Recommendation: Ensemble based algorithms
have been well explored to improve the performance of pre-
diction [20, 27], and are often preferred in recommendation
competitions, such as the Netflix Prize contest [11, 24] and
KDD Cups [17, 30]. Typically, an ensemble method com-
bines the prediction of different algorithms to obtain a fi-
nal prediction [18], which is often referred to as “blend-
ing” [10]. The most basic blending strategy is to acquire
the final prediction based on the mean over all the predic-
tion results or the majority vote. Learning based approaches
have also been proposed to unify different recommendation
algorithms [31]. In our work, to obtain a robust policy, we
resort to ensemble strategies that assimilate the advantages
of different contextual bandit algorithms.

Meta Learning : In machine learning community, the goal
of meta learning is to accumulate experience on the perfor-
mance of multiple learning algorithms [8]. Meta learning has

been widely used in algorithm selection [16, 19]. Due to the
uncertainty of learning algorithms, i.e., we do not know in
advance the predictive performance, a lot of work has mod-
eled algorithm selection as a multi-armed bandit problem [7,
25] and tries to balance the trade-off between exploring al-
gorithm capabilities and exploiting the predictive power of
algorithms. In addition, some recent research efforts [15, 23]
focus on meta learning of exploration/exploitation strate-
gies, where the base learners are bandit algorithms.

3. PROBLEM FORMULATION
In this section, we formulate the problem studied in this

paper. Let A denote the set of items (or bandit arms),
A = {a1, ..., ak}, and Π = {π1,...,πm} be a given set of rec-
ommenders (or policies), where each recommender is a con-
textual bandit algorithm with a specific parameter setting.
πi(x) = a indicates that the policy πi pulls a with respect
to x, where a ∈ A and x is a context feature vector. Let
D be the space of x and p(x) denote the probability density
of x. After the pulling, πi receives a reward r, where r is a
value drawn from the conditional distribution p(·|x, a). In
our work, we only consider r ∈ {0, 1}, i.e., a non-click/click
on a specific item. Thus, p(·|x, a) is a Bernoulli distribution.

Each policy πi ∈ Π aims to maximize the expected re-
ceived reward denoted by E[rπi], where

E[rπi] =

∫
D

∑
a∈A

∑
r∈{0,1}

r · p(r|x, a) · p(a = πi(x)|x) · p(x) dx

=

∫
D

∑
πi(x)∈A

∑
r∈{0,1}

r · p(r, πi(x),x) dx.

The expected reward E[rπi] is known as the CTR of the
policy πi, which is often used as the performance metric.

Existing studies propose different contextual bandit algo-
rithms and show their empirical performances on various
real-world data sets [5, 6, 13]. It is known that a bandit
algorithm with different parameter settings can have differ-
ent performance [22]. The choice of parameters depends on
the distribution of the real data, which is unknown in the
cold-start situation. Therefore, given a set of policies Π, in-
dividual polices in Π can have very different performance for
a particular recommender system. Let π∗ denote the best
policy in terms of the performance, i.e.,

π∗ = argmax
πi∈Π

E[rπi].

For different recommendation problems, π∗ is different and
not known in advance. The goal of this paper is to develop
an ensemble contextual bandit policy such that its perfor-
mance can be close to the performance of π∗.

4. ALGORITHM
This section presents two ensemble bandit algorithms, Hy-

perTS and HyperTSFB, for solving the contextual recommen-
dation problem in the cold-start situation. The idea of these
two algorithms is to distribute the trials to the base bandit
policies. Given a set of policies Π = {π1, ..., πm} and a con-
text x, both algorithms make two decisions to deicide which
arm to pull:

1. Select a policy from Π, denoted by πi;

2. Select the arm a = πi(x) to pull.

For Decision 1, if we know which base policy is the best one,
i.e., π∗, we can always select it. However, the performance
of each policy is unknown at the beginning. To estimate
their expected rewards, we need to select them and observe
the received rewards. Same as Decision 2, the exploration-
exploitation dilemma also exists in Decision 1. In this paper,
we put our focus on the first decision.

To address the policy selection problem in Decision 1, both
of the proposed algorithms leverage non-contextual Thomp-
son sampling [6, 26]. Generally, in each trial, the algorithms
randomly select a policy πi ∈ Π, where the probability of
selecting πi is equal to the probability of πi being π∗, i.e.,
p(Ê[rπi] = max

πj∈Π
Ê[rπj]), where Ê[rπi] is the estimated ex-

pected reward of the policy πi. It is difficult to directly
compute this probability [22]. Thus, in each trial, we ran-
domly draw a value, denoted by r̃πi , from the distribution

of Ê[rπi] for each πi ∈ Π, and then select the policy that has
the maximum value of r̃πi . In the following, we present two
approaches to estimate E[rπi],

4.1 HyperTS Algorithm
HyperTS estimates the expected reward E[rπi] of each

policy πi ∈ Π using Monte Carlo method. Concretely, let
x1,...,xn be the contexts of n trials in which πi is selected.
x1,...,xn are samples drawn from p(x). For an input context
xj , πi pulls the arm aj and receives the reward rj , where
aj is seen as a sample from p(a = πi(xj)|xj), rj is seen as a
sample drawn from p(r|xj , aj). Thus, (xj , aj , rj) is a sam-
ple drawn from the joint distribution p(x, a, r), j = 1, ..., n.

The Monte Carlo estimate is Ê[rπi] = 1
n

∑n
j=1 rj . The

rewards r1, ..., rn ∈ {0, 1} are the sample drawn from the
Bernoulli distribution p(r), which is a marginal distribution

of p(x, a, r). Therefore, Ê[rπi] follows the Beta distribution:

Ê[rπi] ∼ Beta(1 + απi , 1 + βπi),

where απi =
∑n

j=1 rj and βπi = n − απi . For the prior,

Beta(1, 1) is used. Algorithm 1 shows the pseudo-code of

HyperTS. In each trial, ri is a sample of Ê[rπi], drawn from
a Beta distribution. The selected policy is the one having
the maximum ri.

Algorithm 1 HyperTS(Π)

Input: Π : the set of base bandit policies.

1: for i = 1, ...,m do
2: απi ← 0, βπi ← 0
3: end for
4: for t = 1, 2, ... do
5: for i = 1, ...,m do
6: Draw ri from Beta(1 + απi , 1 + βπi).
7: end for
8: Pull the arm a = πj(xt), where j = argmax

i=1,...,m
ri.

9: Receive the reward rxt,a and feed πj with rxt,a.
10: if rxt,a = 1 then
11: απj ← απj + 1
12: else
13: βπj ← βπj + 1
14: end if
15: end for

4.2 HyperTSFB Algorithm
In HyperTS, the expected reward of each base policy is

estimated only from the feedback when that policy is se-

lected. The feedback of the decision made by other policies
is not utilized. If the number of policies in Π is large, the
total number of trials needed for exploring the performance
of base policies will be large and the total reward will be
smaller. To improve the estimation efficiency, we propose
HyperTSFB (HyperTS with shared feedback), an algorithm
that fully utilizes every received feedback for expected re-
ward estimation.

Given the context x, HyperTSFB requires each base policy
πi ∈ Π to provide the probability of πi pulling the arm a,
i.e., p(a = πi(x)|x). Then, even though the policy πi is not
selected in the trial, HyperTSFB can still utilizes the feedback
for x to estimate the expected reward of πi. For some policy,
p(a = πi(x)|x) can be computed directly. For instance, if πi

denotes random policy, then p(a = πi(x)|x) = 1/k, k = |A|;
if πi is ε-greedy, then

p(a = πi(x)|x) =
{
ε/k + (1− ε) if a = a∗

ε/k if a �= a∗,

where a∗ is the arm that has the maximum predicted reward
by the input x. For some policy, p(a = πi(x)|x) can be dif-
ficult to compute, e.g. contextual Thompson sampling. We
can invoke πi(x) multiple times to estimate this probability
according to the frequency of a being output.

Once we can compute p(a = πi(x)|x), E[rπi] can be rewrit-
ten as Eq.(1) and importance sampling [32] can be leveraged
for estimation.

E[rπi] =
∑
a∈A

∫
D

∑
r∈{0,1}

r · p(r|x, a)p(a = πi(x)|x)p(x) dx

=
∑
a∈A

∫
D

∑
r∈{0,1}

r
p(a = πi(x)|x)

p(a|x) p(r|x, a)p(a|x)p(x) dx

=
∑
a∈A

∫
D

∑
r∈{0,1}

(r · wπi
a,x) · p(r|x, a)p(a|x)p(x) dx

=
∑
a∈A

p(a)

∫
D

∑
r∈{0,1}

(r · wπi
a,x) · p(r,x|a) dx

=
∑
a∈A

p(a)Er,x[r · wπi
a,x|a]. (1)

In Eq.(1), wπi
a,x = p(a=πi(x)|x)

p(a|x) is the importance weight, and

Er,x[r · wπi
a,x|a] is the expected reward of πi by pulling a.

Eq.(1) states that the expected reward estimation can be
separated into multiple estimations for different arms. In
the importance weight, p(a|x) is the probability of the arm
a being pulled given the context x,

p(a|x) =
∑
πi∈Π

p(a = πi(x)|x)p(πi = argmax
πj∈Π

Ê[rπj]).

In the implementation, we use a sampling-based method to
obtain the value of p(a|x). For each given context x, we
invoke HyperTSFB multiple times and then estimate p(a|x)
according to the frequency of a being selected. p(a) is the
marginal probability of a being selected, which is simply
approximated by the ratio of a being pulled in all previous
trials done by HyperTSFB.

In Eq.(1), the expected reward of πi by pulling a is

Er,x[r · wπi
a,x|a] =

∫ +∞

−∞
y · p(r · wπi

a,x = y|a) dy

=

∫ +∞

−∞
y · p(r = 1, wπi

a,x = y|a) dy

=

∫ +∞

−∞
y · p(wπi

a,x = y|r = 1, a)p(r = 1|a) dy

= p(r = 1|a) ·
∫ +∞

−∞
y · p(wπi

a,x = y|r = 1, a) dy

= Er,x[r|a] · Ex[w
πi
a,x|r = 1, a]. (2)

In Eq.(2), Er,x[r|a] is the expected reward of pulling arm
a, which is also the overall CTR of a and determined by the
popularity of a. The importance weight wπi

a,x is proportional
to the probability of πi pulling a given x. Ex[w

πi
a,x|r = 1, a]

reflects how likely will πi pulls a if the reward of a is 1.
Intuitively, Eq.(2) states that the expected reward of πi by
pulling a is determined by the popularity of a and the likeli-
hood of πi pulling a if the reward of a is 1. Since r ∈ {0, 1},
we use a Beta distribution to model Êr,x[r|a], i.e.

Êr,x[r|a] ∼ Beta(1 + αa, 1 + βa),

where αa is the number of trials that the received reward is
1 by pulling a, βa is the number of trials that the received
reward is 0 by pulling a. For the prior, uniform distribu-
tion Beta(1, 1) is used. Ex[w

πi
a,x|r = 1, a] is estimated by the

mean of importance weights in previous trials in which a is
pulled and the reward is 1. Assuming for one policy and
one arm those importance weights will converge in one dis-
tribution, based on Central Limit Theory, the sample mean
follows a normal distribution when the sample size is suffi-
cient large, i.e.

Êx[w
πi
a,x|r = 1, a] ∼ N (μa,i, σ

2
a,i/na,i),

where μa,i and σ2
a,i are the mean and variance of the distri-

bution of the importance weights, na,i is the sample size to
calculate the the mean and variance. If the sample size na,i

is not sufficient large (less than 30 [9]), we draw Êx[w
πi
a,x|r =

1, a] from uniform distribution U(0, 1).
Algorithm 2 shows the pseudo-code of HyperTSFB. For

trial t = 1, 2, ..., given the context xt, the sampled expected
reward of πi is rπi , which is calculated based on two other
sampled values from each arm (Line 8 to 21). As for the re-
ceived reward, rxt,a, the estimated parameters of every base
policy and arm a are updated (Line 24 to 34).

5. EVALUATION

5.1 Data Collections
Yahoo! Today News data set is collected by Yahoo! Today

module and published by Yahoo! Research Lab1. The news
articles were randomly displayed on the Yahoo! Front Page
from October 2nd, 2011 to October 16th, 2011. The data
set contains 28,041,015 user visit events to the Yahoo! Today
Module on Yahoo! Front Page. Each visit event is associated
with the user’s information, e.g., age, gender, behavior tar-
geting features, etc., represented by a binary feature vector
of dimension 136. This data set has been used for evaluating

1http://webscope.sandbox.yahoo.com/catalog.php.

Algorithm 2 HyperTSFB(Π)

Input: Π : the set of base bandit policies.

1: for j = 1, ..., k do
2: αaj ← 0, βaj ← 0, naj ← 0
3: for i = 1, ...,m do
4: naj ,i ← 0

5: end for
6: end for
7: for t = 1, 2, ... do
8: for j = 1, ..., k do
9: Draw raj from Beta(1 + αaj , 1 + βaj)
10: end for
11: for i = 1, ...,m do
12: rπi ← 0
13: for j = 1, ..., k do
14: if naj ,i < 30 then

15: Draw w
πi
aj

from U(0, 1)
16: else
17: Draw wπi

aj
from N (μaj ,i, σ

2
aj ,i

/naj ,i)

18: end if
19: rπi ← rπi + naj/t · raj · wπi

aj

20: end for
21: end for
22: Pull the arm a = πs∗(xt), where s∗ = argmax

i=1,...,m
rπi .

23: Receive the reward rxt,a, feed each πi ∈ Π with rxt,a

24: naj ← naj + 1

25: if rxt,a = 1 then
26: for i = 1, ...,m do

27: wt ← p(a=πi(xt)|xt)
p(a|xt)

28: Update μa,i and σ2
a,i by wt

29: na,i ← na,i + 1
30: end for
31: αa ← αa + 1
32: else
33: βa ← βa + 1
34: end if
35: end for

contextual bandit algorithms in other literatures [6, 13, 14].
10 million user visit events are used in this evaluation.

KDD Cup Online Advertising data set is collected by a
search engine and published by KDD Cup 2012 2. In this
data set, each instance is an ad impression (or user visit),
which consists of the user profile, search keywords, displayed
ad information and the click count. The user profile contains
the user’s gender and age. In our work, the context is rep-
resented as a binary feature vector, each entry of which de-
notes whether a query token is contained in the search query
or not. The user’s profile information is also appended to
the context vector using the binary format. The dimension
of the context features for this data set is 1,070,866. One is-
sue of this data set is that the click information is extremely
sparse due to the large pool of the ads. To alleviate this
problem, we only select the top 50 ads that have the most
impressions in the evaluation. The generated data set con-
tains 9 million user visit events.

5.2 Evaluation Methods
The experiments on Yahoo! Today News data set is eval-

uated by the Replayer method [14], which provides an un-
biased offline evaluation by utilizing the historical log. It
has been shown that the CTR estimated by this Replayer
approaches the real CTR of the deployed online system if

2http://www.kddcup2012.org/c/kddcup2012-track2.

the items in historical user visits are randomly and uni-
formly recommended [14]. However, for KDD Cup data
set, the search ads in historical logs are not uniformly rec-
ommended. We hence evaluate this data set using a simu-
lation method [6]. In the simulation method, we first train
a logistic regression model for each ad using the entire data
offline. Then, for each impression with context x, the click
of an ad is generated with a probability (1+exp(−wTx))−1.
Although the evaluated CTR is not the real CTR, it pro-
vides a methodology for comparing different policies in such
high dimensional data.

5.3 Experimental Setup
For evaluation purpose, we use the averaged reward as

the metric, which is the total reward divided by the total
number of trials, i.e., 1

n

∑n
t=1 rt, where n is the number of

trials. The higher the CTR, the better the performance. In
the experiments, to avoid the leakage of business-sensitive
information, we report the relative CTR, which is the overall
CTR of an algorithm divided by the overall CTR of random
selection. The base policies used for the ensemble contain
multiple types of algorithms, including:

• Random: it randomly selects an arm to pull.

• ε-greedy (ε): it randomly selects an arm with prob-
ability ε and selects the arm of the largest predicted
reward with probability 1− ε.

• LinUCB (α) [13]: In each trial, it pulls the arm of the
largest score, which is a linear combination of the mean
and standard deviation of the predicted reward. Given

a context x, the score is µ̂Tx+ α
√

xT Σ̂
−1

x, where µ̂
and Σ̂ are the estimated mean and covariance of the
posterior distribution, and α is a predefined parameter
for controlling the balance of exploration and exploita-
tion.

• Softmax (τ) [3]: it randomly selects an arm ai with

probability
exp(rai

/τ)
∑

aj∈A exp(raj
/τ)

, where rai is the predicted

reward for the arm ai.

• Epoch-greedy [12]: it defines an epoch with length L,
in which a one-step exploration is first performed, and
the rest trials in the epoch are used for exploitation.

• TS (q0) [6]: thompson sampling with logistic regression,
which randomly draws the coefficients from the poste-
rior distribution, and selects the arm of the largest pre-
dicted reward. The priori distribution is N (0, q−1

0 I).

• TSNR (q0): it is similar to TS(q0), but in the stochas-
tic gradient ascent, there is no regularization by the
prior. The priori distribution N (0, q−1

0 I) is only used
in the calculation of the posterior distribution for the
parameter sampling, but not in the learning algorithm.

In the experiments, the reward in a single recommendation
activity is the user click, which is a binary value. There-
fore, logistic regression is applied as the learning model in
all policies (except for Random). Since the contextual bandit
algorithms are online algorithms, stochastic gradient ascent
is used as the learning algorithm [4]. Notice that the algo-
rithms digest the data in an online manner, hence all the
user visits in the data sets are used for the testing purpose.

In our problem setting, we utilize ensemble strategies to
obtain a unified policy. To evaluate the effectiveness of the
ensemble, we empirically compare the following ensemble
algorithms:

• HyperRandom: it randomly selects a policy from the
policy pool, and then performs the recommendation
based on the selected policy.

• HyperTS: The one proposed in Section 4.1.

• HyperTSFB: The one proposed in Section 4.2.

5.4 Result Analysis
For each policy, we test its performance on the entire data

to obtain the overall CTR. To emphasize the robustness of
our proposed ensemble strategy, we also split the data into
multiple time buckets, and evaluate how the policies perform
on each individual time bucket.

5.4.1 On Overall CTR
For base policies, most of them are randomized except

for LinUCB. For each trial, we randomly shuffle the pool of
items to be recommended. Thus, the performance of Lin-

UCB may vary in different runs. We run each policy 10 times,
and calculate the mean, standard deviation, minimum and
maximum of the overall CTR. Table 1 reports the results.
The mean values of the top 5 base policies are highlighted in
bold, and the comparable mean values of ensemble strate-
gies are emphasized by bold*.

As depicted in the table, the performance of the base poli-
cies varies significantly with different parameter values. Ex-
cept for Random (pure exploration) and ε-greedy(0.0) (pure
exploitation), all the base policies take into account both
exploration and exploitation. If the parameter that controls
the relative importance of exploration and exploitation is
perfectly set, then the performance approaches to the op-
timal; otherwise, the performance is relatively poor. How-
ever in practice, it is often difficult to determine the optimal
value for the input parameter of each policy, primarily due
to the online learning process of the algorithms as well as
the unknown data distribution for learning models.

Our proposed ensemble strategies can achieve compara-
ble performance with the top ranked policies in terms of the
overall CTR, by virtue of the bandit property of the hyper
model. It is worthy to note that the two ensemble strategies
have no parameter to choose. Intuitively, with more trials,
the base policies with the bandit property can produce bet-
ter results as there are more data used for learning. By
employing the ensemble strategies that select base policies
based on their corresponding overall CTR, we can certainly
obtain a unified policy with acceptable CTR. From Table 1,
we observe that: (1) The HyperRandom policy performs pure
exploration on the base policies. This may work well at the
beginning of the learning process; however, after a long run,
it cannot obtain acceptable performance due to the random-
ness of the policy selection. (2) The bandit-based ensemble
strategies, i.e., HyperTS and HyperTSFB, are able to achieve
comparable performance with the top ranked base policies.

The advantages of the meta-bandit policies involve two as-
pects: (1) by exploring/exploiting multiple base policies that
have different parameter settings, the meta-bandit policies
are able to absorb the merits of good policies, and hence
produce robust results in terms of the overall CTR; and
(2) there is no parameter setting required for meta-bandit
policies. HyperTS does not have the mechanism of sharing
feedbacks among different policies, then for each base pol-
icy, the digested click traffic may not be sufficient to pro-
duce a high-quality learning model and an accurate CTR
estimate. Without enough click traffic, the base policies

Table 1: Relative CTR on the experimental data.
Algorithm Yahoo! Dataset KDD Dataset

mean std min max mean std min max

Random 1.0000 0.0120 0.9706 1.0149 1.0000 0.0018 0.9972 1.0029
ε-greedy(0.0) 2.0404 0.0509 1.9527 2.1101 2.3761 0.1398 2.1687 2.6573
ε-greedy(0.01) 2.0546 0.0685 1.9267 2.1776 2.6204 0.0266 2.5572 2.6477
ε-greedy(0.1) 2.0668 0.0404 1.9811 2.1114 2.5282 0.0107 2.5136 2.5429
ε-greedy(0.3) 1.8001 0.0303 1.7454 1.8507 2.1974 0.0047 2.1892 2.2041
ε-greedy(0.5) 1.5265 0.0234 1.4866 1.5550 1.8511 0.0029 1.8470 1.8555
LinUCB(0.01) 1.8897 0.0561 1.7832 1.9645 2.3696 0.0885 2.1814 2.4318
LinUCB(0.1) 1.3450 0.0169 1.3215 1.3643 2.2158 0.0036 2.2109 2.2227
LinUCB(0.3) 1.1961 0.0076 1.1877 1.2118 1.9469 0.0046 1.9404 1.9560
Softmax(0.01) 1.9572 0.0572 1.8877 2.0578 2.5435 0.0102 2.5196 2.5586
Softmax(0.1) 1.1138 0.0133 1.0905 1.1308 1.1946 0.0025 1.1881 1.1971
Softmax(1.0) 1.0063 0.0119 0.9809 1.0199 1.0147 0.0012 1.0125 1.0166
Epoch-greedy(5) 1.9512 0.0378 1.8750 2.0237 2.3627 0.0064 2.3490 2.3721
Epoch-greedy(10) 2.0517 0.0841 1.8673 2.1752 2.5278 0.0075 2.5141 2.5378
Epoch-greedy(100) 2.0473 0.0742 1.9198 2.1616 2.5794 0.0645 2.4374 2.6379
Epoch-greedy(500) 2.0473 0.0325 1.9751 2.1022 2.5209 0.0853 2.3721 2.6176
TS(0.01) 1.2100 0.0121 1.1909 1.2238 2.0258 0.0021 2.0228 2.0296
TS(0.1) 1.1654 0.0074 1.1540 1.1801 1.9715 0.0039 1.9652 1.9794
TS(1.0) 1.1401 0.0112 1.1249 1.1603 1.6673 0.0024 1.6625 1.6707
TS(10.0) 0.8779 0.0990 0.6907 1.0322 1.2194 0.5090 0.4646 1.8784
TSNR(0.01) 1.2728 0.0184 1.2486 1.3060 2.0039 0.0025 2.0003 2.0072
TSNR(0.1) 1.2823 0.0108 1.2570 1.2956 2.0589 0.0025 2.0545 2.0621
TSNR(1.0) 1.3471 0.0152 1.3208 1.3741 2.2051 0.0019 2.2024 2.2089
TSNR(10.0) 1.8847 0.0389 1.8013 1.9270 2.4945 0.0031 2.4882 2.4993
HyperRandom 1.1856 0.0099 1.1702 1.2041 1.7379 0.0158 1.7115 1.7597
HyperTS 2.0095 0.0708 1.8719 2.1187 2.5175 0.1279 2.2364 2.6587
HyperTSFB 2.1183* 0.0572 2.0115 2.1842 2.6536* 0.0101 2.6390 2.6709

that exhibit relatively poor performance at the beginning
of the trails may have very limited opportunities to be ex-
plored/exploited in the subsequent trials, even though they
are good policies if running solely. This is the primary rea-
son that the performance of the HyperTS policy is inferior to
the one of the HyperTSFB policy, as indicated in Table 1.

5.4.2 On CTR of Time Buckets
Besides the overall CTR of each policy, we also evalu-

ate the CTR on individual time bucket. The CTR on each
bucket is calculated by the clicks collected in that bucket.
The entire Yahoo! Today News data is split into 100 time
buckets, where each bucket has 100,000 impressions on news
articles. The KDD Cup data set is split into 90 time buck-
ets, with 100,000 impression for each bucket. All the user
visit events are order by the time.

For the purpose of illustration, we compare the ensem-
ble strategies, i.e., HyperTS and HyperTSFB, with each type
of contextual bandit policies, including ε-greedy, LinUCB,
Softmax, Epoch-greedy, TS and TSNR. At each time bucket,
these policies are executed independently, and the relative
CTR for each policy is calculated. The results for Yahoo!
Today News data set and KDD Cup data set are reported in
Figure 1 and 2, respectively. We can observe that the policy
of HyperTSFB achieves consistent performance on both data
sets. Although in some time buckets the relative CTR of Hy-
perTSFB is slightly lower than the one of some specific base
policies, its overall performance is quite robust compared
with other baselines.

From Figure 1 we observe that the CTR curves of differ-
ent policies have wide fluctuations. This is because the CTR
estimated in Yahoo! news data is close to the real CTR in
each bucket. The real CTR of an online recommender sys-
tem usually varies over the time. For instance, popular news

articles may become unpopular since the news is aging. User
interests may change from daytime to nighttime. In con-
trast, the CTR curves for KDD Cup data, as described in
Figure 2, are quite flat except the first few time buckets, and
the reason is straightforward. The click of KDD Cup data
is simulated by a group of logistic regression models. The
time factor is not included in those models. Despite differ-
ent characteristics of the two data sets, our proposed meta-
bandit policy performs in a very robust way. This further
demonstrates the generalization capability of our proposed
method in dealing with different recommendation problems.

Another interesting phenomenon is that the CTR lift of
HyperTSFB is significantly higher than the one of HyperTS at
the first few time buckets on both Yahoo! Today News data
and KDD Cup data. The reason here is straightforward:
by sharing feedbacks among different policies, the data used
for exploring/exploiting the policies become rich, and hence
there are more data used for training the underlying learn-
ing model and estimating the performance of base policies.
Therefore, at the initial time buckets, HyperTSFB outper-
forms HyperTS in terms of CTR.

To further demonstrate the robustness of our proposed
methods, we consider to rank all the policies based on their
CTR lift, and then examine if the result of HyperTSFB is in
the top ranked list. Specifically in each time bucket, we rank
the base and ensemble policies based on the CTR lift, and
then count the number of times that a policy appears in the
top@k ranked list. Next, we calculate the ratio of this count
with the total number of buckets for each policy. Finally,
we rank the policies based on their ranking ratios. For this
evaluation, 4 best performed policies of Yahoo! Today News
data and KDD Cup data are reported in Table 2 and 3,
respectively, in which we consider the top@1, top@3 and
top@5 results.

(a) With ε-greedy. (b) With LinUCB. (c) With Softmax.

(d) With Epoch-greedy. (e) With TS. (f) With TSNR.

Figure 1: Comparison on Yahoo! News Data.

Table 2: CTR ranking on buckets for Yahoo! data.

top@1 top@3 top@5
Policies Ratio Policies Ratio Policies Ratio
HyperTSFB 88.89% HyperTSFB 100.00% HyperTSFB 100.00%
ε(0.01) 11.11% ε(0.01) 97.78% ε(0.01) 100.00%
- - Epoch(100) 78.89% Epoch(100) 80.00%
- - Softmax(0.01) 16.67% Softmax(0.01) 80.00%

As observed in Table 2, our proposed policy HyperTSFB on
Yahoo! Today News data always achieves the 1st place in the
top@1, top@3 and top@5 results. Also in Table 3, Hyper-
TSFB reaches the 2nd place of top@1, 3rd place of top@3,
and 1st place of top@5. The results indicate that Hyper-

TSFB is able to achieve promising performance in most time
buckets. Such an observation further confirms the robust ca-
pability of our proposed policy in handling different online
recommendation problems.

Table 3: CTR ranking on buckets for KDD data.

top@1 top@3 top@5
Policies Ratio Policies Ratio Policies Ratio
ε(0.0) 18.00% ε(0.0) 43.00% HyperTSFB 72.00%
HyperTSFB 12.00% Epoch(500) 43.00% Epoch(500) 68.00%
Epoch(500) 12.00% HyperTSFB 39.00% ε(0.0) 61.00%
LinUCB(0.01) 11.00% Epoch(100) 34.00% Epoch(100) 57.00%

In addition, the performance of base policies with dif-
ferent parameter settings may vary significantly over dif-
ferent experimental data. From Table 2, we observe that
ε-greedy(0.01) and Epoch(100) perform very well on Ya-
hoo! Today News data, indicating that for this data set,
the bandit policies can have achieve striking performance
with a limited exploration. Comparatively in Table 3, ε-
greedy(0.0) and Epoch(500) are able to produce promising
results, meaning that higher CTR can be achieved on KDD
Cup data based on the policies with much less exploration.

6. CONCLUDING REMARKS
In personalized recommender systems, the dilemma of ex-

ploration/exploitation in the cold-start situation remains a
challenging issue due to the uncertainty of user preferences.
A lot of contextual bandit policies have been proposed to
tackle this dilemma; however, the prerequisite of the input
parameters limits the predictive power of the policies. In
real-world applications, these policies cannot be easily eval-
uated under different parameters as they may require too
much web traffic and affect the profit of service providers.

In this work, we explore ensemble strategies of multi-
ple contextual bandit policies to obtain robust predicted
CTR. Specifically, we employ a meta-bandit paradigm that
places a hyper bandit over the base bandits, to explicitly ex-
plore/exploit the relative importance of base bandits based
on user feedbacks. The proposed approach does not have the
restriction on the number of policies being involved, and can
always obtain an acceptable CTR close the the optimal. Ex-
tensive empirical evaluation on two data sets demonstrates
the efficacy of our proposed approach in terms of CTR.

Acknowledgment
The work was supported in part by the National Science
Foundation under grants DBI-0850203, HRD-0833093, CNS-
1126619, and IIS-1213026, the U.S. Department of Home-
land Security under grant number 2010-ST-06200039, Army
Research Office under grants W911NF-1010366 andW911NF-
12-1-0431, and an FIU Dissertation Year Fellowship.

7. REFERENCES
[1] D. Agarwal et al. Online models for content optimization.

In NIPS, pages 17–24, 2008.
[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.

The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

(a) With ε-greedy. (b) With LinUCB. (c) With Softmax.

(d) With Epoch-greedy. (e) With TS. (f) With TSNR.

Figure 2: Comparison on KDDCup Data.

[3] A. G. Barto. Reinforcement learning: An introduction.
MIT press, 1998.

[4] C. M. Bishop et al. Pattern recognition and machine
learning, volume 1. Springer, 2006.

[5] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A
contextual-bandit algorithm for mobile context-aware
recommender system. In NIPS, pages 324–331, 2012.

[6] O. Chapelle and L. Li. An empirical evaluation of
thompson sampling. In NIPS, pages 2249–2257, 2011.

[7] M. Gagliolo and J. Schmidhuber. Algorithm selection as a
bandit problem with unbounded losses. Springer, 2010.

[8] C. Giraud-Carrier. Metalearning-a tutorial. In ICMLA,
2008.

[9] R. V. Hogg and E. A. Tanis. Probability and Statistical
Inference. Prentice Hall, 1996.

[10] M. Jahrer, A. Töscher, and R. Legenstein. Combining
predictions for accurate recommender systems. In
SIGKDD, pages 693–702. ACM, 2010.

[11] Y. Koren. The bellkor solution to the netflix grand prize.
Netflix prize documentation, 2009.

[12] J. Langford and T. Zhang. The epoch-greedy algorithm for
contextual multi-armed bandits. NIPS, pages 817–824,
2007.

[13] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In WWW, pages 661–670. ACM, 2010.

[14] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article
recommendation algorithms. In WSDM, pages 297–306.
ACM, 2011.

[15] F. Maes, L. Wehenkel, and D. Ernst. Meta-learning of
exploration/exploitation strategies: The multi-armed bandit
case. Springer, 2013.

[16] A. Maurer. Algorithmic stability and meta-learning. In
JMLR, pages 967–994, 2005.

[17] T. G. McKenzie et al. Novel models and ensemble
techniques to discriminate favorite items from unrated ones
for personalized music recommendation. In KDDCUP,
2011.

[18] R. Polikar. Ensemble based systems in decision making.
Circuits and Systems Magazine, IEEE, 6(3):21–45, 2006.

[19] A. Prodromidis, P. Chan, and S. Stolfo. Meta-learning in
distributed data mining systems: Issues and approaches.
Advances in distributed and parallel knowledge discovery, 3,
2000.

[20] J. B. Schafer, J. A. Konstan, and J. Riedl.
Meta-recommendation systems: user-controlled integration
of diverse recommendations. In CIKM, pages 43–51. ACM,
2002.

[21] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In
SIGIR, pages 253–260. ACM, 2002.

[22] S. L. Scott. A modern bayesian look at the multi-armed
bandit. Applied Stochastic Models in Business and
Industry, 26(6):639–658, 2010.

[23] J. Seiler. Meta learning in recommendation systems.
Master Thesis, Technical University of Berlin, 2013.

[24] J. Sill, G. Takács, L. Mackey, and D. Lin. Feature-weighted
linear stacking. arXiv preprint arXiv:0911.0460, 2009.

[25] C. Tekin and M. van der Schaar. Decentralized online big
data classification-a bandit framework. arXiv preprint
arXiv:1308.4565, 2013.

[26] W. R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, pages 285–294, 1933.

[27] M. Tiemann and S. Pauws. Towards ensemble learning for
hybrid music recommendation. In RecSys, pages 177–178.
ACM, 2007.

[28] M. Tokic. Adaptive ε-greedy exploration in reinforcement
learning based on value differences. In KI, pages 203–210,
2010.

[29] J. Vermorel and M. Mohri. Multi-armed bandit algorithms
and empirical evaluation. In ECML, pages 437–448, 2005.

[30] M. Wu. Collaborative filtering via ensembles of matrix
factorizations. In KDDCUP, 2007.

[31] K. Yu, A. Schwaighofer, and V. Tresp. Collaborative
ensemble learning: Combining collaborative and
content-based information filtering via hierarchical bayes.
In UAI, pages 616–623, 2002.

[32] B. Zadrozny. Learning and evaluating classifiers under
sample selection bias. In ICML, pages 114–121. ACM, 2004.

